Agrobacterium tumefaciens-mediated transformation of a hevein-like gene into asparagus leads to stem wilt resistance

Autoři: Helong Chen aff001;  Anping Guo aff001;  Zhiwei Lu aff004;  Shibei Tan aff003;  Jian Wang aff001;  Jianming Gao aff002;  Shiqing Zhang aff002;  Xing Huang aff003;  Jinlong Zheng aff003;  Jingen Xi aff003;  Kexian Yi aff003
Působiště autorů: Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China aff001;  Institute of Tropical Bioscience and Biotechnology/Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences /Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, Chi aff002;  Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China aff003;  South Subtropical Crops Institute, Chinese Academy of Tropical Agricultural Sciences/ Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, Zhanjiang, Guangdong, China aff004
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223331


Asparagus stem wilt, is a significant and devastating disease, typically leading to extensive economic losses in the asparagus industry. To obtain transgenic plants resistant to stem wilt, the hevein-like gene, providing broad spectrum bacterial resistance was inserted into the asparagus genome through Agrobacterium tumefaciens-mediated transformation. The optimal genetic transformation system for asparagus was as follows: pre-culture of embryos for 2 days, inoculation using a bacterial titre of OD600 = 0.6, infection time 10 min and co-culturing for 4 days using an Acetosyringone concentration of 200 μmol/L. Highest transformation frequencies reached 21% and ten transgenic asparagus seedlings carrying the hevein-like gene were identified by polymerase chain reaction. Moreover, integration of the hevein-like gene in the T1 generation of transgenic plants was confirmed by southern blot hybridization. Analysis showed that resistance to stem wilt was enhanced significantly in the transgenic plants, in comparison to non- transgenic plants. The results provide additional data for genetic improvement and are of importance for the development of new disease-resistant asparagus varieties.

Klíčová slova:

Agrobacteria – Embryos – Genetically modified plants – Plant pathology – Plasmid construction – Polymerase chain reaction – Seedlings – Agrobacterium tumefaciens


1. Anido FL, Cointry E. Asparagus. In: Jaime P, Fernando N, editors. Vegetables II. Springer: Universidad Politécnica de Valencia; 2008. pp. 87–119.

2. Chen HL, Xi JG, Gao JM, Zheng JL, Zhang SQ, Du YX,et al. Present situation and developing measure of Asparagus officinalis L. in the tropics. Guangdong Nong Ye Ke Xue 2013; 40(8):210–212.

3. Delbreil B, Guerche P, Jullien M. Agrobacterium-mediated transformation of asparagus officinalis l. long-term embryogenic callus and regeneration of transgenic plants. Plant Cell Rep. 1993; 12(3):129–132. doi: 10.1007/BF00239092 24196848

4. Cabrera-Ponce JL, López L, Assad-Garcia N, Medina-Arevalo C, Bailey AM, Herrera-Estrella L. An efficient particle bombardment system for the genetic transformation of asparagus (asparagus officinalis L.). Plant Cell Rep.1997;16(5):255–260. doi: 10.1007/BF01088276 30727658

5. Mukhopadhyay S, Desjardins Y.Direct gene transfer to protoplasts of two genotypes of asparagus officinalis L. by electroporation. Plant Cell Rep.1994; 13(8):421–424. doi: 10.1007/BF00231959 24194018

6. Garrison S A and Chin C. Perspectives in asparagus breeding, in: Eleventh International Asparagus Symposium, Horst/Venlo, (June 19, 2005).

7. Lee HI, Broekaert WF, Raikhel NV. Co- and post-translational processing of the hevein preproprotein of latex of the rubber tree (hevea brasiliensis). J. Biol. Chem. 1991; 266(24):15944–15948. 1874741

8. Gidrol X, Chrestin H, Tan HL, Kush A. Hevein a lectin-like protein from hevea brasiliensis (rubber tree) is involved in the coagulation of latex. J. Biol. Chem. 1994; 269(12):9278–9283. 8132664

9. Innis MA, Holland MJ, Mccabe PC, Cole GE, Wittman VP, Tal R. Expression, glycosylation, and secretion of an aspergillus glucoamylase by saccharomyces cerevisiae. Science. 1985; 228(4695):21–26. doi: 10.1126/science.228.4695.21 17811549

10. Slavokhotova A., Shelenkov AA, Andreev Y., Odintsova TI. Hevein-Like Antimicrobial Peptides of Plants. Biochemistry. 2017; 82:1659–1674. doi: 10.1134/S0006297917130065 29523064

11. Davis EG, Sang Y, Blecha F. Equine beta-defensin-1: full-length cdna sequence and tissue expression. Vet. Immunol. Immunopathol. 2004; 99(1–2):127–132. doi: 10.1016/j.vetimm.2003.12.010 15113660

12. De Leeuw E, Li CQ, Zeng PY. Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II. FEBS Lett. 2010; 584(8):1543–1548. doi: 10.1016/j.febslet.2010.03.004 20214904

13. Yang YQ, Li XM, MENG F, LAN B. Establishment of a resistance-identification method on asparagus stem blight and evaluation of Asparagus officinalis germplasms. Acta phytopathologica sinica. 2012; 42(6):649–654.

14. Han QD, Hu XJ, Huang KY, Yan MJ, Zhou XY, Li Y. Effects in activities of defense enzymes and contents of mda in wheat leaf infected by powdery mildew. Mol. Plant Breed. 2016; 14 (10):2803–2811.

15. Gao ZJ. Application of SPSS in ANOVA of biological statistics. Xian Dai Sheng Wu Yi Xue Jin Zhan. 2008; 8(11):2116–2120.

16. Gnasekaran P, Antony JJJ, Uddain J, Subramaniam S. Agrobacterium-mediated transformation of the recalcitrant vanda kasem's delight orchid with higher efficiency. Scientific World Journal. 2014; 2014:1–10.

17. Kang X, Xu G, Wang Y. Screening and Optimization Agrobacterium tumefaciens-Mediated Potato Genetic Transformation System. Journal of Desert Research. 2016; 36(1):225–231.

18. Zhou Y, Zhao X, Wu X, Zhang Y, Zhang L, Luo K. Agrobacterium-mediated transformation of ljamp2 gene into 'red sun' kiwifruit and its molecular identification. Chin. J. Biotechnol. 2014; 30(6):931–942.

19. Liu YR, Cen HF, Yan JP, Zhang WJ. Optimizing of Agrobacterium-mediated transformation of switchgrass cultivars. Zhongguo Nong Ye Ke Xue. 2016; 49(1):80–89.

20. Hernalsteens JP, Thiatoong L, Schell J, Van MM. An Agrobacterium-transformed cell culture from the monocot asparagus officinalis. EMBO J. 1984; 3(13), 3039–3041. 16453585

21. Bytebier B, Deboeck F, De GH, Montagu MV, Hernalsteens JP. T-dna organization in tumor cultures and transgenic plants of the monocotyledon asparagus officinalis. Proc. Natl. Acad. Sci. U.S.A. 1987; 84(15):5345–9. doi: 10.1073/pnas.84.15.5345 16593862

22. Limantongrevet A, Jullien M. Agrobacterium-mediated transformation of asparagus officinalis L.: molecular and genetic analysis of transgenic plants. Mol. Breed. 2001; 7(2):141–150.

23. Zhai J. Agrobacterium tumefaciens-Mediated Transformation of Spermidine Synthase Gene MdSPDSl and In Vitro Plant Regeneration of Citrus. Doctoral dissertation, HuaZhong Agricultural University. 2006.

24. Duan Y. Optimization of Agrobacterium-mediated transformation and Production of Transgenic Plants with LFY and API Genes in Cirtus. Doctoral dissertation, HuaZhong Agricultural University. 2006.

25. Song PL, Zhang J, Hao LF, Huang FH, Yuan XL, Bao YY, et al. Changes in activities of defense enzymes in different rapeseed cultivars infected by leptosphaeria biglobosa. Xi Bei Nong Ye Xue Bao. 2015; 30(2):110–115.

Článek vyšel v časopise


2019 Číslo 10