Green synthesis of silver nanoparticles using Solanum mammosum L. (Solanaceae) fruit extract and their larvicidal activity against Aedes aegypti L. (Diptera: Culicidae)

Autoři: Fernanda Pilaquinga aff001;  Bianca Morejón aff003;  Danny Ganchala aff002;  Jeroni Morey aff001;  Neus Piña aff001;  Alexis Debut aff004;  Marco Neira aff003
Působiště autorů: Department of Chemistry, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain aff001;  Laboratory of Nanotechnology, Department of Exact and Natural Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador aff002;  Center for Research on Health in Latin America, Department of Exact and Natural Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador aff003;  Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador aff004
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article


The family of mosquitoes (Diptera: Culicidae) contains several species of major public health relevance due to their role as vectors of human disease. One of these species, Aedes aegypti, is responsible for the transmission of some of the most important vector-borne viruses affecting humankind, including dengue fever, chikungunya and Zika. Traditionally, control of Ae. aegypti and other arthropod species has relied on the use of a relatively small diversity of chemical insecticides. However, widespread and intensive use of these substances has caused significant adverse environmental effects and has contributed to the appearance of pesticide-resistant populations in an increasing number of locations around the world, thereby dramatically reducing their efficiency. Therefore, it becomes urgent to develop novel alternative tools for vector control. In that context, our study aimed at evaluating the insecticidal activity against Ae. aegypti of aqueous extracts obtained from the fruits of Solanum mammosum L., as well as silver nanoparticles synthesized using aqueous extracts from this plant species (SmAgNPs). To perform the test, third instar Ae. aegypti larvae were exposed to increasing concentrations of plant extract and SmAgNPs for 24 h. Our results suggest that both the aqueous extract and SmAgNPs were toxic to the larvae, with SmAgNPs displaying a much higher level of toxicity than the extract alone, as reflected in their LC50 values (0.06 ppm vs 1631.27 ppm, respectively). These results suggest that both S. mammosum extracts and SmAgNPs exhibit noteworthy larvicidal activity, and should be further explored as potential source of alternative tools in the fight against insect vectors of human disease.

Klíčová slova:

Fruits – Insecticides – Larvae – Nanoparticles – Pest control – Silver – Solanum – Toxicity


1. Muktar Y, Tamerat N, Shewafera A. Aedes aegypti as a Vector of Flavivirus. J Trop Dis. 2016;4. doi: 10.4172/2329-891X.1000101

2. Cook G, Zumla A. Manson’s Tropical Diseases. Philadelphia: Saunders; 2008

3. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496: 504–507. doi: 10.1038/nature12060 23563266

4. Frierson JG. The yellow fever vaccine: a history. Yale J Biol Med. 2010;83: 77–85. Available from:

5. CDC. Integrated Mosquito Management. 2017 Dec 12 [cited 22 Mar 2018] In: CDC- NCEZID [Internet]. Available from:

6. Manjarres A, Olivero J. Chemical control of Aedes aegypti: a historical perspective. Rev Costarric Salud Pública. 2013;22: 68–75. Available from:

7. Gubler D. Prevention and Control of Aedes aegypti-borne Diseases: Lesson Learned from Past Successes and Failures. As Pac J Mol Biol Biotech. 2011;19: 111–114

8. Roghelia V, Patel V. Effect of Pesticides on Human Health. Research & Reviews: A Journal of Health Professions. 2017;7: 30–40. Available from:

9. Margni M, Rossier D, Crettaz P, Jolliet O. Life cycle impact assessment of pesticides on human health and ecosystems. Agric Ecosyst Environ. 2002;93: 379–392. doi: 10.1016/S0167-8809(01)00336-X

10. Haya K. Toxicity of pyrethroid insecticides to fish. Environ Toxicol Chem. 1989;8: 381–391. doi: 10.1002/etc.5620080504

11. Desneux N, Decourtye A, Delpuech J. The Sublethal Effects of Pesticides on Beneficial Arthropods. Annu Rev Entomol. 2007;52: 81–106. doi: 10.1146/annurev.ento.52.110405.091440 16842032

12. Goindin D, Delannay C, Gelasse A, Ramdini C, Gaude T, Faucon F, et al. Levels of insecticide resistance to deltamethrin, malathion, and temephos, and associated mechanisms in Aedes aegypti mosquitoes from the Guadeloupe and Saint Martin islands (French West Indies). Infect Dis Poverty. 2017;6: 38. doi: 10.1186/s40249-017-0254-x 28187780

13. Bisset J, Rodríguez M, Fernandez D. Selection of Insensitive Acetylcholinesterase as a Resistance Mechanism in Aedes aegypti (Diptera: Culicidae) from Santiago de Cuba. J Med Entomol. 2006;43: 1185–1190

14. Aguirre-Obando O, Bona A, Duque J, Navarro-Silva M. Insecticide resistance and genetic variability in natural populations of Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Colombia. Zoologia (Curitiba). 2015;32: 14–22. doi: 10.1590/S1984-46702015000100003

15. Bastidas D, Figueroa L, Pérez E, Molina D. Estado de la resistencia a insecticidas organosintéticos de Aedes aegypti de Coro, estado Falcon, Venezuela. Bol Malariol y Salud Ambient. 2015;LV: 173–183. Available from:

16. Garcia G, David M, Martins A, Maciel-de-Freitas R, Linss J, Araújo S, et al. The impact of insecticide applications on the dynamics of resistance: The case of four Aedes aegypti populations from different Brazilian regions. PLoS Negl Trop Dis. 2018;12: e0006227. doi: 10.1371/journal.pntd.0006227 29432488

17. Thiyagarajan P, Kumar PM, Kovendan K, Murugan K. Effect of medicinal plant and microbial insecticides for the sustainable mosquito vector control. Acta Biol Indica. 2014;3: 527–535. Available from:

18. Siegwart M, Graillot B, Blachere C, Besse S, Bardin M, Nicot PC, et al. Resistance to bio-insecticides or how to enhance their sustainability: a review. Front Plant Sci. 2015;6: 381. doi: 10.3389/fpls.2015.00381 26150820

19. Borase H, Patil C, Salunkhe R, Narkhede C, Salunke B, Patil S. Phyto-Synthesized Silver Nanoparticles: A Potent Mosquito Biolarvicidal Agent. J Nanomedine Biotherapeutic Discov. 2013;3. doi: 10.4172/2155-983X.1000111

20. Hajra A, Mondal NK. Silver Nanoparticles: An Eco-Friendly Approach for Mosquito Control. Int J Sci Res Environ Sci. 2015;3: 47–61.

21. Sorescu A, Nuţă A, Rodica M, Bunghez I. Green synthesis of silver nanoparticles using plant extracts. The 4th International Virtual Conference on Advanced Scientific Results. 2016 Jun 10–6; Zilina, Slovakia. Chemical Sciences. 2016;1: 188–192. doi: 10.18638/scieconf.2016.4.1.386

22. Zhang X-F, Liu Z-G, Shen W, Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int J Mol Sci. 2016;17. doi: 10.3390/ijms17091534 27649147

23. Kumar B, Smita K, Cumbal L. Phytosynthesis of gold nanoparticles using Andean Aji' (Capsicum baccatum L.). Cogent Chem. 2015;1. doi: 10.1080/23312009.2016.1229830

24. Jørgensen P, León-Yánez S, editors. Catalogue of the vascular plants of Ecuador. Monogr Syst Bot from Missouri Bot Gard. 1999;75: 1–1182.

25. De La Torre L, Navarrete H, Muriel P, Macía M, Balslev H. Enciclopedia de las Plantas Útiles del Ecuador. Quito: Herbario QCA de la Escuela de Ciencias Biológicas de la Pontificia Universidad Católica del Ecuador & Herbario AAU del Departamento de Ciencias Biológicas de la Universidad de Aarhus; 2008.

26. Miller R. A Morphological Study of Solanum mammosum and Its Mammiform Fruit. Bot Gaz. 1969;130: 230–237. doi: 10.1086/336496

27. Aguirre A. Determinación de la Sensibilidad al Insecticida Deltametrina e Identificación de Alelos de Resistencia a Piretroides en Poblaciones Ecuatorianas de Aedes aegypti. Thesis, Escuela Politécnica del Ejército. 2016.

28. Carvalho D, Nimmo D, Naish N, McKerney A, Gray P, Wilke A, et al. Mass production of genetically modified Aedes aegypti for field releases in Brazil. J Vis Exp. 2014;83: 1–10. doi: 10.3791/3579 24430003

29. WHO. Guidelines for laboratory and field testing of mosquito larvicides. World Health Organisation. 2005; 1–41. doi: WHO/CDS/WHOPES/GCDPP/2005.11

30. Morejon B, Pilaquinga F, Domenech F, Ganchala D, Debut A, Neira M. Larvicidal Activity of Silver Nanoparticles Synthesized Using Extracts of Ambrosia arborescens (Asteraceae) to Control Aedes aegypti L. (Diptera: Culicidae). J Nanotechnol. 2018. doi: 10.1155/2010/825363

31. Finney D. Probit Analysis. Cambridge, UK: Cambridge University Press; 1971.

32. R Team Core. R: A language and environment for statistical computing [Internet]. Viena: Foundation for Statistical Computing; 2013. Available from:

33. Venables W, Ripley B. Modern Applied Statistics with S. New York: Springer; 2002.

34. Pradeep T. A textbook of nanoscience and nanotechnology. New Delhi: Tata McGraw-Hill Education; 2003.

35. Ramesh S, Grijalva M, Debut A, De la Torre B, Albericio F, Cumbal L. Peptides conjugated to silver nanoparticles in biomedicine—a “value-added” phenomenon. Biomater Sci. 2016. doi: 10.1039/c6bm00688d 27748772

36. Vizuete KS, Brajesh K, Katherine G, Alexis D, Luis C. Shora (Capparis petiolaris) fruit mediated green synthesis and application of silver nanoparticles. Green Process Synth. 2017;6: 23–30. doi: 10.1515/gps-2016-0015

37. Kumar B, Smita K, Cumbal L, Debut A. Ficus carica (Fig) Fruit Mediated Green Synthesis of Silver Nanoparticles and its Antioxidant Activity: a Comparison of Thermal and Ultrasonication Approach. Bionanoscience. 2016;6: 15–21. doi: 10.1007/s12668-016-0193-1

38. Chowdhury N, Ghosh A, Chandra G. Mosquito larvicidal activities of Solanum villosum berry extract against the dengue vector Stegomyia aegypti. BMC Complement Altern Med. 2008;8. doi: 10.1186/1472-6882-8-10 18387176

39. Raghavendra K, Singh SP, Subbarao SK, Dash AP. Laboratory studies on mosquito larvicidal efficacy of aqueous & hexane extracts of dried fruit of Solanum nigrum Linn. Indian J Med Res. 2009;130: 74–77. Available from:

40. Mahesh Kumar P, Murugan K, Kovendan K, Subramaniam J, Amaresan D. Mosquito larvicidal and pupicidal efficacy of Solanum xanthocarpum (Family: Solanaceae) leaf extract and bacterial insecticide, Bacillus thuringiensis, against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res. 2012;110: 2541–2550. doi: 10.1007/s00436-011-2797-2 22215195

41. Premalatha S, Elumalai K, Jeyasankar A. Mosquitocidal properties of Solanum trilobatum L. (Solanaceae) leaf extracts against three important human vector mosquitoes (Diptera: Culicidae). Asian Pac J Trop Med. 2013;6: 854–858. doi: 10.1016/S1995-7645(13)60152-2

42. Patil C, Patil S, Salunke B, Salunkhe R. Bioefficacy of Plumbago zeylanica (Plumbaginaceae) and Cestrum nocturnum (Solanaceae) plant extracts against Aedes aegypti (Diptera: Culicide) and nontarget fish Poecilia reticulata. Parasitol Res. 2011;108: 1253–1263. doi: 10.1007/s00436-010-2174-6 21107859

43. Yúfera E. Química orgánica básica y aplicada: de la molécula a la industria [Internet]. Madrid: Reverté; 1995. Available from:

44. Rawani A, Ghosh A, Chandra G. Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Trop. 2013;128: 613–622. doi: 10.1016/j.actatropica.2013.09.007 24055718

45. Murugan K, Dinesh D, Kumar PJ, Panneerselvam C, Subramaniam J, Madhiyazhagan P, et al. Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi. Parasitol Res. 2015;114: 4645–4654. doi: 10.1007/s00436-015-4710-x 26337272

46. Govindarajan M, Khater H, Panneerselvam C, Benelli G. One-pot fabrication of silver nanocrystals using Nicandra physalodes: A novel route for mosquito vector control with moderate toxicity on non-target water bugs. Res Vet Sci. 2016;107: 95–101. doi: 10.1016/j.rvsc.2016.05.017 27473981

47. Jerzykiewicz J. Alkaloids of Solanaceae (nightshade plants). Postepy Biochem. 2007;53: 280–6. Available from:

48. Spring P, Nagar S, Ramteke PW, Ross EM. Biological Activities of Solanaceous Plants Against Vector Mosquitoes: A Review. 5th International Conference on Innovative Research in Engineering Science and Management (ICIRESM-16). 2016 Sep 4; New Delhi, India. Available from:

49. Chowański S, Adamski Z, Marciniak Pawełand Rosiński G, Büyükgüzel E, Büyükgüzel K, Falabella P, et al. A Review of Bioinsecticidal Activity of Solanaceae Alkaloids. Toxins. 2016;8: 60. doi: 10.3390/toxins5010060

50. Benelli G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res. 2016;115: 23–34. doi: 10.1007/s00436-015-4800-9 26541154

51. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Kumar PM, et al. Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach? Environ Sci Pollut Res Int. 2015;22: 20067–20083. doi: 10.1007/s11356-015-5253-5 26300364

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden