The effects of environmental parameters on the microbial activity in peat-bog lakes


Autoři: Sylwia Lew aff001;  Katarzyna Glińska-Lewczuk aff002;  Marcin Lew aff003
Působiště autorů: University of Warmia and Mazury in Olsztyn, Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, Olsztyn, Poland aff001;  University of Warmia and Mazury in Olsztyn, Department of Water Resources, Climatology and Environmental Management, Faculty of Environmental Management and Agriculture, Olsztyn, Poland aff002;  University of Warmia and Mazury in Poland, Faculty of Veterinary Medicine, Olsztyn, Poland aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224441

Souhrn

Microbiological activity is an important parameter for understanding the functioning of different environments. Therefore, the purpose of this study was to estimate the quantity and contribution of metabolically active at the single-cell level bacteria in the microbial community in peat-bog lakes. To determine different aspects of the metabolic activity of bacteria, four fluorescent staining methods (Dehydrogenase/Electron Transport System Activity -CTC+, Nucleoid Containing Cells- NuCC+, Active Bacteria with Intact Ribosome Structures- RIB+ and Active Bacteria With an Intact Membrane—MEM+) were applied. We identified four natural peat-bog lakes in Northern Europe to determine which factors—community (bacterial factors) or environment (hydrochemical and physical factors)—have a significant influence on the quantitative dynamics of metabolically active microorganisms, in terms of seasonal and habitat changes. The results show that change in the amount of abiotic components such as DOC, TN, and TOC can result in stress, which may limit a function but does not lead to losing all other metabolic functions in the community-forming bacteria. In nutrient-poor peat bog lakes, nutrients and organic carbon are factors which regulate the overall activity of the community.

Klíčová slova:

Bacteria – Cell membranes – Cell metabolism – Cell staining – Lakes – Surface water – Bogs – Bacterioplankton


Zdroje

1. Zwart GBC, Crump M, Agterveld F, Hagen, Han SK. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol. 2002; 28: 141–155.

2. Stevenson LH. A case for bacterial dormancy in aquatic systems. Microbiol Ecol. 1978; 4: 127–133

3. DelGiorgio PA, Gasol JM. Physiological structure and single-cell activity in marine bacterioplankton. In: Kirchman DR editor. Microbial Ecology of the Oceans, 2 st ed. NewYork JohnWiley&Sons,Inc. 2008. pp. 243–298.

4. Del Giorgio PA, Prairie YT, Bird DF. Coupling between rates of bacterial production and the abundance of metabolically active bacteria in lakes, enumerated using CTC reduction and flow cytometry. Microbial Ecology. 1997; 34: 144–154. 9230102

5. Lew S, Lew M, Mieszczyński T, Szarek J. Selected Fluorescent Techniques for Identification of the Physiological State of Individual Water and Soil Bacterial Cells–review. Folia Microbol. 2010; 55: 107–118.

6. Joux F, Lebaron P. Use of fluorescent probes to assess physiological functions of bacteria at single–cell level. Microbes and Infection. 2000; 2: 1523–1535. 11099939

7. Servais P, Agogue H, Courties C, Lebaron J. Are the actively respiring cells (CTC+) those responsible for bacterial production in aquatic environmental? FEMS Microb Ecol. 2001; 35: 171–179.

8. Ullrich S, Karrasch B, Hoppe HG, Jeskulke K, Mehrens M. Toxic effects on bacterial metabolism of the redox dye 5-cyano-2,3-ditotyl tetrazolium chloride. Appl Environ Microbiol. 1999; 62; 4587–4593.

9. Sieracki ME, Cucci TL, Nicinski J. Flow cytometric analysis of 5-cyano-2,3-ditolyl tetrazolium chloride activity of marine bacterioplankton in dilution cultures. Appl Environ Microbiol. 1999; 6: 2409–2417.

10. Sherr BF, Sherr EB, Del Giorgio P. Enumeration of total and highly active bacteria. In: Methods in microbiology: volume 30; 2001. pp 129.

11. Lew S, Świątecki A. Using fluorescence techniques in identification of metabolically active bacteria. Limnological Papers 2007; 2: 9–19.

12. Decamp O, Rajendran N. Assessment of bacterioplankton viability by membrane integrity. Mar Poll Bull. 1998; 36: 739–741.

13. Bouvier T, Del Giorgio PA. Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): A quantitative review of published reports. FEMS Microb Ecol. 2003; 44: 3–15.

14. Gruden CL, Fevig S, Abu-Dalo M, Hernandez M. 5-Cyano2,3-ditolyl tetrazolium chloride (CTC) reduction in a mesophilic anaerobic digester: Measuring redox behavior, differentiating abiotic reduction, and comparing FISH response as an activity indicator. J Microbiol Methods. 2003; 52: 59–68. 12401227

15. Skowrońska A, Zmysłowska I. Współczesne metody identyfikacji bakterii stosowane w ekologii mikroorganizmów wodnych-fluorescencyjna hybrydyzacja in situ (FISH). Post Mikrobiol 2006; 45: 183–193.

16. Blazewicz SJ, Barnard R, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. The ISME Journal 2013; 7: 2061–2208. doi: 10.1038/ismej.2013.102 23823491

17. Freese HM, Karoten U, Schumann R. Bacterial abundance, activity, and viability in the eutrophic river warnow, Northeas Germany. Microb Ecol 2006; 51: 117–127. doi: 10.1007/s00248-005-0091-5 16395540

18. Gasol JM, Del Giorgio PA, Massana R, Duarte CM. Active versus inactive bacteria: size-dependence in a coastal marine plankton community. Mar Ecol Prog Ser 1995; 128: 91–97.

19. Junge K, Eicken H, Deming JW. Bacterial activity at -2 to -20°C in Arctic Wintertime Sea Ice. Appl Environ Microbiol. 2004; 70: 550–557. doi: 10.1128/AEM.70.1.550-557.2004 14711687

20. Smith EM, del Giorgio PA. Low fractions of active bacteria in natural aquatic communities? Aquat. Microb Ecol 2003; 31: 201–208.

21. Haglund AL, Törnblom E, Tranvik L. Large differences in the fraction of active bacteria in plankton, sediments and biofilm. Microb Ecol. 2002; 43: 232–241. doi: 10.1007/s00248-002-2005-0 12023730

22. Haglund AL, Lantz P, Törnblom E, Tranvik L. Depth distribution of active bacteria and bacterial activity in lake sediment. Microb Ecol 2003; 46: 31–38.

23. Song HG, Kim OS, Yoo JJ, Hong SH, Lee DH, Ahn TS. Monitoring of Soil Bacterial Community and Some Inoculated Bacteria After Prescribed Fire in Microcosm. J Microbiol. 2004; 42: 285–291. 15650684

24. Kent AD, Jones SE, Yannerell AC, Graham AC, Lauster GH, Kratz TK, Triplett EW. Annual patterns in bacterioplankton community variability in a humic lake. Microb Ecol. 1994; 48: 550–560.

25. Del Giorgio PA, Gasol JM, Vaque D, Mura P, Agusti S, Duarte CM. Bacterioplankton community structure: protist control net production and the proportion of active bacteria in a coastal marine community. Limnol Oceanogr. 1996; 41: 1169–1179.

26. Juszczak R., Augustin J. Exchange of the greenhouse gases methane and nitrous oxide at a temperate pristine fen mire in Central Europe. Wetlands. 2013; 33: 895–907.

27. Lew S, Glińska-Lewczuk K, Ziembińska-Buczyńska A. Prokaryotic Community Composition Affected by Seasonal Changes in Physicochemical Properties of Water in Peat Bog Lakes. Water. 2018; 10: 485–505.

28. Arvola L, Eloranta P, Järvinen M, Keskitalo J, Holopainen A.–L. Phytoplankton. In: Keskitalo J, Eloranta P, editors. Limnology of humic waters. Bachkhuys Publishers. Leiden 1999. pp. 137–171.

29. Benatti CT, Tavares CRG, Lenzi E. Sulfate removal fromwaste chemicals by precipitation. J Environ Manag. 2009; 90: 504–511.

30. Pan X, Sanders R, Tappin AD, Worsfold PJ, Achterberg EP. Simultaneous determination of dissolved organic carbon and total dissolved nitrogen on a coupled high-temperature combustion total organic carbon-nitrogen chemiluminescence detection HTC TOC-NCD system. J Autom Methods Manag Chem. 2005, 10: 240–246.

31. Porter KG, Feig YS. The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr. 1980; 25: 943–948.

32. Zweifel UL, Hagström A. Total counts of marine bacteria include a large fraction of non- nucleoid-containing bacteria (ghosts). Appl Environ Microbiol. 1995; 6: 2180–2185.

33. Berman T, Kaplan B, Chava S, Sherr BF, Sherr EB. Metabolically active bacteria in Lake Kinneret. Aquat Microb Ecol. 2001; 23: 213–219.

34. Rodriguez GG, Phipps D, Ishiguro K, Ridgway HF. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl Environ Microbiol. 1992; 58: 1801–1808. 1622256

35. Howard-Jones MH, Verity PG, Fischer ME. Determining the physiological status of individual bacterial cells. In: Howard-Jones MH editor. Methods in microbiology: volume 30. 2001; pp. 175.

36. Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization (FISH) with rRNA-targd oligonucleotide probes (review). Methods in Microbiology. 2001; 30: 207–226.

37. Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol. 2002; 68: 3094–3101. doi: 10.1128/AEM.68.6.3094-3101.2002 12039771

38. Daims H, Brühl A, Amann R, Schleifer KH, Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria; development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 1999, 22: 434–444. doi: 10.1016/S0723-2020(99)80053-8 10553296

39. Höskuldsson A. PLS regression methods. Journal of Chemometrics. 1988; 2(3): 211–228.

40. Sobek S, Algesten G, Bergstrom AK, Jansson M, Tranvik LJ. The catchment and climate regulation of pCO2 in boreal lakes. Glob Change Biol. 2003; 9: 630–664.

41. Heningsson M, Sundbom E, Armelius BA, Erdberg P. PLS model building: A multivariate approach to personality test data. Scandinavian Journal of Psychology. 2001; 42: 399–409. 11771809

42. Ooms K. Identification of potentially causal regressors in PLS models. Dissertation: International Study Program in Statistics. Belgium: Katholieke Universiteit Leuven; 1996.

43. Finzi AC, Austin AT, Cleland EE, Frey SD, Houlton BZ, Wallenstein MD. Responses and feedbacks of coupled biogeochemical cycles to climate change: examples from terrestrial ecosystems. Front Ecol Environ. 2011; 9(1): 61–67.

44. Soares ARA, Bergström K, Sponseller RA, Moberg JM, Giesler R, Kritzberg RS, et al. New insights on resource stoichiometry: assessing availability of carbon, nitrogen, and phosphorus to bacterioplankton. Biogeosciences. 2017; 14: 1527–1539.

45. Kalinowska K, Guśpiel A, Kiersztyn B, Chróst R. Factors controlling bacteria and protists in selected Mazurian eutrophic lakes (North-Eastern Poland) during spring. Aquatic Biosystems. 2013; 9: 9–23. doi: 10.1186/2046-9063-9-9 23566491

46. Søndergaard M, Danielsen M. Active bacteria (CTC+) in temperate lakes: temporal and cross-system variations. J Plankton Res. 2001; 23: 1195–1206.

47. Mieczan T, Tarkowska-Kukuryk M. Diurnal dynamics of the microbial loop in peatlands: structure, function and relationship to environmental parameters. Hydrobiologia. 2013; 717: 189–201.

48. Porter J, Morris SA, Pickup R. Effect of trophic status on the culturability and activity of bacteria from a range of lakes in the English Lake District. Appl Environ Microbiol. 2004; 70: 2072–2078. doi: 10.1128/AEM.70.4.2072-2078.2004 15066798

49. Choi JW, Sherr EB, Sherr BS. Relation between presence-absence of visible nucleoid and metabolic activity in bacterioplankton cells. Limnol Oceanogr. 1996; 41: 1161–1168.

50. Luna GM, Manini E, Danovaro R. Large fraction of dead and inactive bacteria in coastal marine sediments: comparison of protocols for determination and ecological significance. Appl Environ Microbiol. 2002; 7: 3509–3513.

51. Schumann R, Schiewer U, Karsten U, Rieling T. Viability of bacteria from different aquatic habitats. II. Cellular fluorescent markers for membrane integrity and metabolic activity. Aquat Microb Ecol. 2003b; 32: 137–150.

52. Schumann R, Rieling T, Görs S, Hammer A, Seling U, Schiewer U. Viability of bacteria from different aquatic habitats. I. Environmental conditions and productivity. Aquat Microb Ecol. 2003a; 32: 121–135.

53. Lew S. Structural and functional characteristic of bacterioplankton of diverse lake ecosystems. Doctoral dissertation, Olsztyn: University of Warmia and Mazury in Olsztyn; 2003.

54. Chróst RJ, Siuda W. Microbial production, utilization, and enzymatic degradation of organic matter in the upper trophogenic layer in the pelagial zone of lakes along a eutrophication gradient. Limnol. Oceanogr. 2006, 51: 749–762.

55. Caron DA, Lim EL, Sanders RW, Dennett MR, Berninger U-G. Responses of bacterioplankton and phytoplankton to organic carbon and inorganic nutrient additions in contrasting oceanic ecosystems. Aquat Microb Ecol. 2000; 22: 175–184.

56. Vrede K, Heldal M, Norland S, Bratbak G. Elemental Composition (C, N, P) and Cell Volume of Exponentially Growing and Nutrient-Limited Bacterioplankton. Appl Environ Microbiol. 2002; 68: 2965–2971. doi: 10.1128/AEM.68.6.2965-2971.2002 12039756

57. Choi JW, Sherr BF, Sherr EB. Dead or alive? A large fraction of ETS-inactive marine bacterioplankton cells, as assessed by reduction of CTC, can become ETS-active with incubation and substrate addition. Aquat Microb Ecol. 1999; 18: 105–115.

58. Hessen DO, Nygaard K, Salonen K, Vahatalo A. The effect of substrate stoichiometry on microbial activity and carbon degradation in humic lakes. Environ Int. 1994; 20: 67–76.

59. Pelegri S, Dolan J, Rassoulzadegan F. Use of high temperature catalytic oxidation (HTCO) to measure carbon content of microorganisms. Aquat Microb Ecol. 1999; 16: 273–280.

60. Koch AL. Microbial physiology and ecology of slow growth. Microbiol. Mol. Biol. Rev. 1997; 61, 1092–2172

61. Nygaard K, Hessen DO. Diatom kills by flagellates. Nature 1994; 367: 520.

62. Lew S, Glińska-Lewczuk K. Environmental controls on the methanotrophs and methanogens abundance in peat bog lakes. Science of the Total Environment, 2018; 645: 1201–1211. doi: 10.1016/j.scitotenv.2018.07.141 30248845

63. Bernay M, Hammes F, Bosshard F, Weilenmann H-U, Egli T. Assessment and Interpretation of Bacterial Viability by Using the LIVE/DEAD BacLight Kit in Combination with Flow Cytometry. Appl Environ Microbiol. 2007; 73: 3283–3290. doi: 10.1128/AEM.02750-06 17384309

64. Berdjeb L, Ghiglione J-F, Jacquet S. Bottom-up versus top-down of hypo and epilimnion free-living bacterial community structure in two neighboring freshwater lakes. Appl Environ Microbiol. 2011; 77: 3591–3602. doi: 10.1128/AEM.02739-10 21478309


Článek vyšel v časopise

PLOS One


2019 Číslo 10