Systematic review and REMARK scoring of renal cell carcinoma prognostic circulating biomarker manuscripts

Autoři: Marco A. J. Iafolla aff001;  Sarah Picardo aff001;  Kyaw Aung aff001;  Aaron R. Hansen aff001
Působiště autorů: Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada aff001;  University of Toronto, Toronto, Ontario, Canada aff002;  Livestrong Cancer Institute and Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article



No validated molecular biomarkers exist to help guide prognosis of renal cell carcinoma (RCC) patients. We seek to evaluate the quality of published prognostic circulating RCC biomarker manuscripts using the Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK) guidelines.


The phrase “(renal cell carcinoma OR renal cancer OR kidney cancer OR kidney carcinoma) AND circulating AND (biomarkers OR cell free DNA OR tumor DNA OR methylated cell free DNA OR methylated tumor DNA)” was searched in Embase, Medline and PubMed March 2018. Relevant manuscripts were scored using 48 REMARK sub-criteria for a maximal score of 20 points.


The search identified 535 publications: 33 were manuscripts of primary research and were analyzed. The mean REMARK score was 10.6 (range 6.42–14.2). All manuscripts stated their biomarker, study objectives and method of case selection. The lowest scoring criteria: time lapse between storage of blood/serum and marker assay (n = 2) and lack of flow diagram (n = 2). REMARK scores were significantly higher in publications stating adherence to REMARK guidelines (p = 0.0307) and reporting statistically significant results (p = 0.0318).


Most RCC prognostic biomarker manuscripts poorly adhere to the REMARK guidelines. Better designed studies and appropriate reporting are required to address this urgent unmet need.

Klíčová slova:

Biomarkers – Cancer treatment – DNA methylation – Histology – Renal cell carcinoma – Statistical data – Systematic reviews – Renal cancer


1. Lughezzani G, Jeldres C, Isbarn H, Perrotte P, Shariat SF, Sun M, et al. Tumor size is a determinant of the rate of stage T1 renal cell cancer synchronous metastasis. J Urol. 2009;182(4):1287–93. Epub 2009/08/18. doi: 10.1016/j.juro.2009.06.018 19683281.

2. Karakiewicz PI, Trinh QD, Bhojani N, Bensalah K, Salomon L, de la Taille A, et al. Renal cell carcinoma with nodal metastases in the absence of distant metastatic disease: prognostic indicators of disease-specific survival. Eur Urol. 2007;51(6):1616–24. Epub 2007/01/09. doi: 10.1016/j.eururo.2006.12.015 17207909

3. Heng DY, Xie W, Regan MM, Harshman LC, Bjarnason GA, Vaishampayan UN, et al. External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: a population-based study. The Lancet Oncology. 2013;14(2):141–8. Epub 2013/01/15. doi: 10.1016/S1470-2045(12)70559-4 23312463.

4. Sun M, Shariat SF, Cheng C, Ficarra V, Murai M, Oudard S, et al. Prognostic factors and predictive models in renal cell carcinoma: a contemporary review. Eur Urol. 2011;60(4):644–61. Epub 2011/07/12. doi: 10.1016/j.eururo.2011.06.041 21741163.

5. Takahashi M, Rhodes DR, Furge KA, Kanayama H, Kagawa S, Haab BB, et al. Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification. Proc Natl Acad Sci U S A. 2001;98(17):9754–9. Epub 2001/08/09. doi: 10.1073/pnas.171209998 11493696.

6. Matsushita H, Sato Y, Karasaki T, Nakagawa T, Kume H, Ogawa S, et al. Neoantigen Load, Antigen Presentation Machinery, and Immune Signatures Determine Prognosis in Clear Cell Renal Cell Carcinoma. Cancer immunology research. 2016;4(5):463–71. Epub 2016/03/17. doi: 10.1158/2326-6066.CIR-15-0225 26980598.

7. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6. Epub 2002/02/02. doi: 10.1038/415530a 11823860.

8. Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nature medicine. 2002;8(8):816–24. Epub 2002/07/16. doi: 10.1038/nm733 12118244.

9. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. The New England journal of medicine. 2002;346(25):1937–47. Epub 2002/06/21. doi: 10.1056/NEJMoa012914 12075054.

10. Miao D, Margolis CA, Gao W, Voss MH, Li W, Martini DJ, et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science. 2018;359(6377):801–6. Epub 2018/01/06. doi: 10.1126/science.aan5951 29301960.

11. Voss MH, Kuo F, Chen D, Marker M, Patel P, Redzematovic A, et al. Integrated biomarker analysis for 412 renal cell cancer (RCC) patients (pts) treated on the phase 3 COMPARZ trial: Correlating common mutation events in PBRM1 and BAP1 with angiogenesis expression signatures and outcomes on tyrosine kinase inhibitor (TKI) therapy. Journal of Clinical Oncology. 2017;35(15_suppl):4523-. doi: 10.1200/JCO.2017.35.15_suppl.4523

12. Kern SE. Why your new cancer biomarker may never work: recurrent patterns and remarkable diversity in biomarker failures. Cancer research. 2012;72(23):6097–101. Epub 2012/11/23. doi: 10.1158/0008-5472.CAN-12-3232 23172309.

13. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM, et al. REporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer. 2005;93(4):387–91. Epub 2005/08/18. doi: 10.1038/sj.bjc.6602678 16106245.

14. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;350:g7647. Epub 2015/01/04. doi: 10.1136/bmj.g7647 25555855.

15. Altman DG, McShane LM, Sauerbrei W, Taube SE. Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): explanation and elaboration. PLoS Med. 2012;9(5):e1001216. Epub 2012/06/08. doi: 10.1371/journal.pmed.1001216 22675273.

16. Harris AL. REporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer. 2005;93(4):385–6. Epub 2005/08/18. doi: 10.1038/sj.bjc.6602730 16106244.

17. Reports IJC. InCites Journal Citation Reports [October 9, 2018)].

18. Academic O. Journal of the National Cancer Institute [October 9, 2018)].

19. Library WO. The Oncologist [October 9, 2018)].

20. Library WO. Cancer [October 9, 2018)].

21. Link S. Tumor Biology [October 9, 2018)].

22. Oncotarget. Oncotarget [October 9, 2018)].

23. Online O. Journal of Molecular Biomarkers and Diagnosis [October 9, 2018)].

24. Schulz KF, Altman DG, Moher D, Group C. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Int J Surg. 2011;9(8):672–7. Epub 2011/10/25. doi: 10.1016/j.ijsu.2011.09.004 22019563.

25. Riley RD, Sauerbrei W, Altman DG. Prognostic markers in cancer: the evolution of evidence from single studies to meta-analysis, and beyond. Br J Cancer. 2009;100(8):1219–29. Epub 2009/04/16. doi: 10.1038/sj.bjc.6604999 19367280.

26. Riley RD, Hayden JA, Steyerberg EW, Moons KG, Abrams K, Kyzas PA, et al. Prognosis Research Strategy (PROGRESS) 2: prognostic factor research. PLoS Med. 2013;10(2):e1001380. Epub 2013/02/09. doi: 10.1371/journal.pmed.1001380 23393429.

27. McShane LM, Hayes DF. Publication of tumor marker research results: the necessity for complete and transparent reporting. J Clin Oncol. 2012;30(34):4223–32. Epub 2012/10/17. doi: 10.1200/JCO.2012.42.6858 23071235.

28. Peat G, Riley RD, Croft P, Morley KI, Kyzas PA, Moons KG, et al. Improving the transparency of prognosis research: the role of reporting, data sharing, registration, and protocols. PLoS Med. 2014;11(7):e1001671. Epub 2014/07/09. doi: 10.1371/journal.pmed.1001671 25003600.

29. Glasziou P, Altman DG, Bossuyt P, Boutron I, Clarke M, Julious S, et al. Reducing waste from incomplete or unusable reports of biomedical research. Lancet. 2014;383(9913):267–76. Epub 2014/01/15. doi: 10.1016/S0140-6736(13)62228-X 24411647.

30. Macleod MR, Michie S, Roberts I, Dirnagl U, Chalmers I, Ioannidis JP, et al. Biomedical research: increasing value, reducing waste. Lancet. 2014;383(9912):101–4. Epub 2014/01/15. doi: 10.1016/S0140-6736(13)62329-6 24411643.

31. Moher D, Glasziou P, Chalmers I, Nasser M, Bossuyt PM, Korevaar DA, et al. Increasing value and reducing waste in biomedical research: who’s listening? Lancet. 2016;387(10027):1573–86. Epub 2015/10/02. doi: 10.1016/S0140-6736(15)00307-4 26423180.

32. Malats N, Bustos A, Nascimento CM, Fernandez F, Rivas M, Puente D, et al. P53 as a prognostic marker for bladder cancer: a meta-analysis and review. The Lancet Oncology. 2005;6(9):678–86. Epub 2005/09/01. doi: 10.1016/S1470-2045(05)70315-6 16129368.

33. de Azambuja E, Cardoso F, de Castro G Jr., Colozza M, Mano MS, Durbecq V, et al. Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. Br J Cancer. 2007;96(10):1504–13. Epub 2007/04/25. doi: 10.1038/sj.bjc.6603756 17453008.

34. Sekula P, Mallett S, Altman DG, Sauerbrei W. Did the reporting of prognostic studies of tumour markers improve since the introduction of REMARK guideline? A comparison of reporting in published articles. PloS one. 2017;12(6):e0178531. Epub 2017/06/15. doi: 10.1371/journal.pone.0178531 28614415.

35. Mallett S, Timmer A, Sauerbrei W, Altman DG. Reporting of prognostic studies of tumour markers: a review of published articles in relation to REMARK guidelines. Br J Cancer. 2010;102(1):173–80. Epub 2009/12/10. doi: 10.1038/sj.bjc.6605462 19997101.

36. Whiteley W, Chong WL, Sengupta A, Sandercock P. Blood markers for the prognosis of ischemic stroke: a systematic review. Stroke. 2009;40(5):e380–9. Epub 2009/03/17. doi: 10.1161/STROKEAHA.108.528752 19286602.

37. Scholten-Peeters GG, Verhagen AP, Bekkering GE, van der Windt DA, Barnsley L, Oostendorp RA, et al. Prognostic factors of whiplash-associated disorders: a systematic review of prospective cohort studies. Pain. 2003;104(1–2):303–22. Epub 2003/07/12. doi: 10.1016/s0304-3959(03)00050-2 12855341.

38. Barth J, Schumacher M, Herrmann-Lingen C. Depression as a risk factor for mortality in patients with coronary heart disease: a meta-analysis. Psychosom Med. 2004;66(6):802–13. Epub 2004/11/27. doi: 10.1097/01.psy.0000146332.53619.b2 15564343.

39. Kuijpers T, van der Windt DA, van der Heijden GJ, Bouter LM. Systematic review of prognostic cohort studies on shoulder disorders. Pain. 2004;109(3):420–31. Epub 2004/05/26. doi: 10.1016/j.pain.2004.02.017 15157703.

40. Riley RD, Abrams KR, Sutton AJ, Lambert PC, Jones DR, Heney D, et al. Reporting of prognostic markers: current problems and development of guidelines for evidence-based practice in the future. Br J Cancer. 2003;88(8):1191–8. Epub 2003/04/17. doi: 10.1038/sj.bjc.6600886 12698183.

41. Kyzas PA, Loizou KT, Ioannidis JP. Selective reporting biases in cancer prognostic factor studies. Journal of the National Cancer Institute. 2005;97(14):1043–55. Epub 2005/07/21. doi: 10.1093/jnci/dji184 16030302.

42. Altman DG, Lyman GH. Methodological challenges in the evaluation of prognostic factors in breast cancer. Breast Cancer Res Treat. 1998;52(1–3):289–303. Epub 1999/03/05. doi: 10.1023/a:1006193704132 10066088.

43. Faraggi D, Kramar A. Methodological issues associated with tumor marker development. Biostatistical aspects. Urol Oncol. 2000;5(5):211–3. Epub 2000/09/06. 10973709.

44. Altman DG, Riley RD. Primer: an evidence-based approach to prognostic markers. Nat Clin Pract Oncol. 2005;2(9):466–72. Epub 2005/11/03. doi: 10.1038/ncponc0287 16265015.

45. Hoppin JA, Tolbert PE, Taylor JA, Schroeder JC, Holly EA. Potential for selection bias with tumor tissue retrieval in molecular epidemiology studies. Ann Epidemiol. 2002;12(1):1–6. Epub 2001/12/26. 11750233.

46. Moore HM, Kelly AB, Jewell SD, McShane LM, Clark DP, Greenspan R, et al. Biospecimen reporting for improved study quality (BRISQ). J Proteome Res. 2011;10(8):3429–38. Epub 2011/05/18. doi: 10.1021/pr200021n 21574648.

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden