E2 protein is the major determinant of specificity at the human papillomavirus origin of replication


Autoři: Airiin Laaneväli aff001;  Mart Ustav aff001;  Ene Ustav aff001;  Marko Piirsoo aff001
Působiště autorů: Institute of Technology, University of Tartu, Tartu, Tartumaa, Estonia aff001;  Icosagen Cell Factory Ltd., Õssu, Kambja, Tartumaa, Estonia aff002;  Estonian Academy of Sciences, Tallinn, Harjumaa, Estonia aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224334

Souhrn

The replication of human papillomavirus (HPV) genomes requires E1 and E2 proteins as the viral trans-factors and the replication origin, located in the URR, as a cis-element. The minimal requirements for an HPV replication origin vary among different virus types but always include one or more binding sites for the E2 protein. The requirements for an E1 binding site seem to vary among different HPV genera, with alpha-HPV11 and -18 minimal origins able to replicate without E1 binding site in contrast to beta-HPV8. In the present article, we analysed the sequence requirements for the beta-HPV5 minimal origin of replication. We show that the HPV5 URR is able to replicate in U2OS cells without the sequence proposed as an E1 binding site, albeit at lower levels than wt URR, given that three E2 binding sites are intact and both viral replication proteins are present. The lack of an absolute requirement of the E1 binding site for the origin of replication of HPV5 led us to analyse whether the viral E1 and E2 proteins from other HPV types are competent to support replication from this origin. Surprisingly, the E1 and E2 proteins from beta-HPV types support replication from the origin in contrast to proteins from alpha-HPV types 11, -16, or -18. Furthermore, the replication proteins E1 and E2 of these alpha-HPV types are unable to support the replication of HPV5 URR, even if the E1 binding site is intact. In light of these results, we performed a detailed analysis of the ability of different combinations of E1 and E2 proteins from various alpha- and beta-HPV types to support the replication of URR sequences from the respective HPV types in the U2OS cell line.

Klíčová slova:

DNA replication – DNA-binding proteins – Human papillomavirus – Plasmid construction – Plasmid vectors – Transfection – Viral replication – HPV-11


Zdroje

1. Bzhalava D, Eklund C, Dillner J. International standardization and classification of human papillomavirus types. Virology. 2015; doi: 10.1016/j.virol.2014.12.028 25577151

2. Bernard HU, Burk RD, Chen Z, van Doorslaer K, Hausen H zur, de Villiers EM. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology. 2010; doi: 10.1016/j.virol.2010.02.002 20206957

3. Rector A, Van Ranst M. Animal papillomaviruses. Virology. 2013; doi: 10.1016/j.virol.2013.05.007 23711385

4. Durst M, Gissmann L, Ikenberg H, zur Hausen H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci. 1983; doi: 10.1073/pnas.80.12.3812 6304740

5. Walboomers JMM, Jacobs M V., Manos MM, Bosch FX, Kummer JA, Shah K V., et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999; doi: 10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F

6. De Vuyst H, Clifford GM, Nascimento MC, Madeleine MM, Franceschi S. Prevalence and type distribution of human papillomavirus in carcinoma and intraepithelial neoplasia of the vulva, vagina and anus: A meta-analysis. Int J Cancer. 2009; doi: 10.1002/ijc.24116 19115209

7. Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, Wu L, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst. 2000; doi: 10.1093/jnci/92.9.709 10793107

8. Tommasino M. The biology of beta human papillomaviruses. Virus Research. 2017. doi: 10.1016/j.virusres.2016.11.013 27856220

9. Orth G. Epidermodysplasia verruciformis: a model for understanding the oncogenicity of human papillomaviruses. Ciba Found Symp. 1986;

10. Iftner T, Bierfelder S, Csapo Z, Pfister H. Involvement of human papillomavirus type 8 genes E6 and E7 in transformation and replication. J Virol. 1988;

11. Favre M, Majewski S, De Jesus N, Malejczyk M, Orth G, Jablonska S. A possible vertical transmission of human papillomavirus genotypes associated with epidermodysplasia verruciformis. J Invest Dermatol. 1998; doi: 10.1046/j.1523-1747.1998.00312.x 9699739

12. Majewski S, Jablonska S. Do epidermodysplasia verruciformis human papillomaviruses contribute to malignant and benign epidermal proliferations? Archives of Dermatology. 2002. doi: 10.1001/archderm.138.5.649 12020228

13. Pfister H, Fuchs PG, Majewski S, Jablonska S, Pniewska I, Malejczyk M. High prevalence of epidermodysplasia verruciformis-associated human papillomavirus DNA in actinic keratoses of the immunocompetent population. Arch Dermatol Res. 2003; doi: 10.1007/s00403-003-0435-2 14618345

14. Feltkamp MCW, de Koning MNC, Bavinck JNB, ter Schegget J. Betapapillomaviruses: Innocent bystanders or causes of skin cancer. Journal of Clinical Virology. 2008. doi: 10.1016/j.jcv.2008.09.009 18986829

15. Arroyo Mühr LS, Hortlund M, Bzhalava Z, Nordqvist Kleppe S, Bzhalava D, Hultin E, et al. Viruses in case series of tumors: Consistent presence in different cancers in the same subject. PLoS One. 2017; doi: 10.1371/journal.pone.0172308 28257474

16. Mcbride M. NIH Public Access. 2012;12: 496–502. doi: 10.1097/GIM.0b013e3181e5e513.African

17. O’Connor MO, Chan S, Bernard H. Transcription Factor Binding Sites in the Long Control Region of Genital HPVs. Hum Papillomaviruses 1995 Compend. 1995; 21–40.

18. Ustav M, Ustav E, Szymanski P, Steniund A1. Identification of the origin of replication of bovine papillomavirus and characterization of the viral origin recognition factor E1. EMBO J. 1991; doi: 10.1002/j.1460-2075.1991.tb05010.x

19. Lu JZ, Sun YN, Rose RC, Bonnez W, McCance DJ. Two E2 binding sites (E2BS) alone or one E2BS plus an A/T-rich region are minimal requirements for the replication of the human papillomavirus type 11 origin. J Virol. 1993;67: 7131–9. 8230435

20. Sverdrup F, Khan SA. Two E2 binding sites alone are sufficient to function as the minimal origin of replication of human papillomavirus type 18 DNA. J Virol. 1995;

21. Lee D, Kim H, Lee Y, Choe J. Identification of sequence requirement for the origin of DNA replication in human papillomavirus type 18. Virus Res. 1997; doi: 10.1016/S0168-1702(97)00114-7

22. Akgül B, Karle P, Adam M, Fuchs PG, Pfister HJ. Dual role of tumor suppressor p53 in regulation of DNA replication and oncogene E6-promoter activity of Epidermodysplasia verruciformis-associated human papillomavirus type 8. Virology. 2003; doi: 10.1016/S0042-6822(02)00133-2

23. Bunney MH, Barr BB, Mclaren K, Smith IW, Benton EC, Anderton JL, et al. HUMAN PAPILLOMAVIRUS TYPE 5 AND SKIN CANCER IN RENAL ALLOGRAFT RECIPIENTS. The Lancet. 1987. doi: 10.1016/S0140-6736(87)92346-4

24. Iftner T, Pfister H, Chow L, Broker T, Delius H, Kraus J, et al. Genetic Relationship among Human Papillomaviruses Associated with Benign and Malignant Tumours of Patients with Epidermodysplasia Verruciformis. J Gen Virol. 1987;68: 3091–3103. doi: 10.1099/0022-1317-68-12-3091 2826651

25. Geimanen J, Isok-Paas H, Pipitch R, Salk K, Laos T, Orav M, et al. Development of a Cellular Assay System To Study the Genome Replication of High- and Low-Risk Mucosal and Cutaneous Human Papillomaviruses. J Virol. 2011; doi: 10.1128/JVI.01985-10 21248030

26. Sankovski E, Mannik A, Geimanen J, Ustav E, Ustav M. Mapping of Betapapillomavirus Human Papillomavirus 5 Transcription and Characterization of Viral-Genome Replication Function. J Virol. 2014; doi: 10.1128/JVI.01841-13 24198410

27. Kadaja M, Sumerina A, Verst T, Ojarand M, Ustav E, Ustav M. Genomic instability of the host cell induced by the human papillomavirus replication machinery. EMBO J. 2007; doi: 10.1038/sj.emboj.7601665 17396148

28. Reinson T, Toots M, Kadaja M, Pipitch R, Allik M, Ustav E, et al. Engagement of the ATR-Dependent DNA Damage Response at the Human Papillomavirus 18 Replication Centers during the Initial Amplification. J Virol. 2013; doi: 10.1128/JVI.01943-12 23135710

29. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967; doi: 10.1016/0022-2836(67)90307-5

30. Abbate EA, Berger JM, Botchan MR. The X-ray structure of the papillomavirus helicase in complex with its molecular matchmaker E2. Genes Dev. 2004; doi: 10.1101/gad.1220104 15289463

31. Auster AS, Joshua-Tor L. The DNA-binding domain of human papillomavirus type 18 E1: Crystal structure, dimerization, and DNA binding. J Biol Chem. 2004; doi: 10.1074/jbc.M311681200 14593106

32. Sedman T, Sedman J, Stenlund A. Binding of the E1 and E2 proteins to the origin of replication of bovine papillomavirus. J Virol. 1997;

33. Chen G, Stenlund A. Characterization of the DNA-binding domain of the bovine papillomavirus replication initiator E1. J Virol. 1998;72: 2567–76. 9525573

34. Sarafi TR, McBride AA. Domains of the BPV-1 E1 replication protein required for origin-specific DNA binding and interaction with the E2 transactivator. Virology. 1995; doi: 10.1006/viro.1995.1421 7645243

35. Gopalakrishnan V, Sheahan L, Khan SA. DNA replication specificity and functional E2 interaction of the E1 proteins of human papillomavirus types 1a and 18 are determined by their carboxyl-terminal halves. Virology. 1999; doi: 10.1006/viro.1999.9665 10191198

36. Chiang CM, Ustav M, Stenlund A, Ho TF, Broker TR, Chow LT. Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins. Proc Natl Acad Sci U S A. 1992;

37. Gopalakrishnan V, Khan SA. E1 protein of human papillomavirus type 1a is sufficient for initiation of viral DNA replication. Proc Natl Acad Sci. 1994; doi: 10.1073/pnas.91.20.9597 7937813

38. Androphy EJ, Lowy DR, Schiller JT. Bovine papillomavirus E2 trans-activating gene product binds to specific sites in papillomavirus DNA. Nature. 1987; doi: 10.1038/325070a0 3025749

39. Moskaluk C, I3astia D. The E2 &quot;gene&quot; of bovine papillomavirus encodes an enhancer-binding protein (transcriptional control/recombinant DNA/DNA-protein interaction). Biochemistry. 1987;84: 1215–1218.

40. Li R, Knight J, Bream G, Stenlund A, Botchan M. Specific recognition nucleotides and their DNA context determine the affinity of E2 protein for 17 binding sites in the BPV-1 genome. Genes Dev. 1989; doi: 10.1101/gad.3.4.510 2542129

41. Hawley-Nelson P, Androphy EJ, Lowy DR, Schiller JT. The specific DNA recognition sequence of the bovine papillomavirus E2 protein is an E2-dependent enhancer. EMBO J. 2018;7: 525–531. doi: 10.1002/j.1460-2075.1988.tb02841.x

42. Rogers A, Waltke M, Angeletti PC. Evolutionary variation of papillomavirus E2 protein and E2 binding sites. Virol J. 2011; doi: 10.1186/1743-422X-8-379 21806797

43. Hines CS, Meghoo C, Shetty S, Biburger M, Brenowitz M, Hegde RS. DNA structure and flexibility in the sequence-specific binding of papillomavirus E2 proteins. J Mol Biol. 1998; doi: 10.1006/jmbi.1997.1578 9500925

44. Blakaj DM, Kattamuri C, Khrapunov S, Hegde RS, Brenowitz M. Indirect readout of DNA sequence by papillomavirus E2 proteins depends upon net cation uptake. J Mol Biol. 2006; doi: 10.1016/j.jmb.2006.01.093 16513133

45. Bedrosian CL, Bastiav D. The DNA-binding domain of HPV-16 E2 protein interaction with the viral enhancer: Protein-induced DNA bending and role of the nonconserved core sequence in binding site affinity. Virology. 1990; doi: 10.1016/0042-6822(90)90109-5

46. Alexander KA, Phelps WC. A fluorescence anisotropy study of DNA binding by HPV-11 E2C protein: A hierarchy of E2-binding sites. Biochemistry. 1996; doi: 10.1021/bi960447d 8703960

47. Kim SS, Tam JK, Wang AF, Hegde RS. The structural basis of DNA target discrimination by papillomavirus E2 proteins. J Biol Chem. 2000; doi: 10.1074/jbc.M004541200 10906136

48. Sánchez IG, Dellarole M, Gaston K, de Prat Gay G. Comprehensive comparison of the interaction of the E2 master regulator with its cognate target DNA sites in 73 human papillomavirus types by sequence statistics. Nucleic Acids Res. 2008; doi: 10.1093/nar/gkm1104 18084026


Článek vyšel v časopise

PLOS One


2019 Číslo 10