Spectral measure of color variation of black-orange-black (BOB) pattern in small parasitoid wasps (Hymenoptera: Scelionidae), a statistical approach

Autoři: Rebeca Mora-Castro aff001;  Marcela Hernández-Jiménez aff002;  Marcela Alfaro-Córdoba aff005;  Esteban Avendano aff002;  Paul Hanson-Snortum aff003
Působiště autorů: Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San José, Costa Rica aff001;  Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, San José, Costa Rica aff002;  Escuela de Biología, Universidad de Costa Rica, San Jose, Costa Rica aff003;  Escuela de Física, Universidad de Costa Rica, San José, Costa Rica aff004;  Centro de Investigación en Matemática Pura y Aplicada, Universidad de Costa Rica, San José, Costa Rica aff005;  Escuela de Estadística, Universidad de Costa Rica, San José, Costa Rica aff006
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0218061


Small parasitoid wasps are abundant and extremely diverse, yet their colors have not been analyzed. One of the more common color patterns observed in these wasps is a black-orange-black pattern, which is especially common among neotropical species of Scelionidae ranging in size from 2 to 10 mm. Due to the methodological challenges involved in extracting and analyzing pigments from small-sized insects, other methods for examining colors need to be explored. In this work, we propose the use of microspectrophotometry in combination with statistical analysis methods in order to 8 study the spectral properties in such cases. We examined 8 scelionid genera and 1 genus from a distantly related family (Evaniidae), all showing the black-orange-black pattern. Functional Data Analysis and statistical analysis of Euclidean distances for color components were applied to study color differences both between and within genera. The Functional Data Analysis proved to be a better method for treating the reflectance data because it gave a better representation of the physical information. Also, the reflectance spectra were separated into spectral color component contributions and each component was labeled according to its own dominant wavelength at the maximum of the spectrum: Red, Green and Blue. When comparing spectral components curves, the spectral blue components of the orange and black colors, independent of the genera being compared, result almost identical, suggesting that there is a common compound for the pigments. The results also suggest that cuticle from different genera, but with the same color might have a similar chemical composition. This is the first time that the black and orange colors in small parasitoid wasps has been analyzed and our results provide a basis for future research on the color patterns of an abundant but neglected group of insects.

Klíčová slova:

Animal phylogenetics – Hymenoptera – Chemical composition – Insects – Pigments – Statistical data – Wasps – Microspectrophotometry


1. Rutowski RL, Macedonia JM, Morehouse N, Taylor-Taft L. Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme. Proceedings of the Royal Society B 2005, 272: 2329-2335.

2. Garcia JA, Polidori C, Nieves-Aldrey JL. Pheomelanin in the secondary sexual characters of male parasitoid wasps (Hymenoptera: Pteromalidae). Arthropod Structure & Development. 2016;45(4):311–319. doi: 10.1016/j.asd.2016.05.001

3. Hines HM, Witkowski P, Wilson JS, Wakamatsu K. Melanic variation underlies aposematic color variation in two hymenopteran mimicry systems. PLOS ONE. 2017;12(7):e0182135. doi: 10.1371/journal.pone.0182135 28753659

4. Mallet J, Joron M. Evolution of diversity in warning color and mimicry: polymorphisms, shifting balance, and speciation. Annual Review of Ecology and Systematics. 1999;30(1):201–233. doi: 10.1146/annurev.ecolsys.30.1.201

5. Brakefield PM. Industrial melanism: Do we have the answers? Trends in Ecology & Evolution. 1987;2(5):117–122. doi: 10.1016/0169-5347(87)90051-6 21227832

6. Marchini M, Sommaggio D, Minelli A. Playing with black and yellow: the evolvability a Batesian mimicry. Evolutionary Biology. 2017;44(1):100–112. doi: 10.1007/s11692-016-9397-0

7. Vidal-Cordero JM, Moreno-Rueda G, López-Orta A, Marfil-Daza C, Ros-Santaella JL, Ortiz-Sánchez FJ. Brighter-colored paper wasps (Polistes dominula) have larger poison glands. Frontiers in zoology. 2012;9(1):20. doi: 10.1186/1742-9994-9-20 22901602

8. Rapti Z, Duennes MA, Cameron SA. Defining the colour pattern phenotype in bumble bees(Bombus): a new model for evo devo. Biological Journal of the Linnean Society. 2014;113(2):384–404. doi: 10.1111/bij.12356

9. Plotkin M, Hod I, Zaban A, Boden SA, Bagnall DM, Galushko D. et al. Solar energy harvesting in the epicuticle of the oriental hornet (Vespa orientalis). Naturwissenschaften. 2010;97(12):1067–1076. doi: 10.1007/s00114-010-0728-1 21052618

10. Austin AD, Johnson NF, Dowton M. Systematics, evolution, and biology of scelionid and platygastrid wasps. Annu. Rev. Entomol.2005;50:553–582. doi: 10.1146/annurev.ento.50.071803.130500 15450001

11. Mora R, Hanson PE. Widespread occurrence of black-orange-black color pattern in Hymenoptera. Journal of Insect Science. 2019;19(2). doi: 10.1093/jisesa/iez021 30851035

12. Murphy NP, Carey D, Castro LR, Dowton M, Austin A.D. Phylogeny of the platygastroid wasps (Hymenoptera) based on sequences from the 18S rRNA, 28S rRNA and cytochrome oxidase I genes: implications for the evolution of the ovipositor system and host relationships. Biological Journal of the Linnean Society.2007;91(4):653–669. doi: 10.1111/j.1095-8312.2007.00825.x

13. Aguiar A. An accurate procedure to describe colors in taxonomic works, with an example from Ichneumonidae (Hymenoptera). Zootaxa. 2005;1008(1):30–38. doi: 10.11646/zootaxa.1008.1.4

14. Stavenga DG, Leertouwer HL, Wilts BD. Quantifying the refractive index dispersion of a pigmented biological tissue using Jamin–Lebedeff interference microscopy. Light: Science & Applications. 2013;2(9):e100–e100. doi: 10.1038/lsa.2013.56

15. Skaldina O, Sorvari J. Not simply red: colouration of red wood ant Formica rufa(Hymenoptera: Formicidae) is polymorphic, modular and size-dependent. European Journal of Entomology. 2017;114:317–324. doi: 10.14411/eje.2017.039

16. Endler JA, Mielke PW. Comparing entire colour patterns as birds see them. Biological Journal of the Linnean Society. 2005;86(4):405–431. doi: 10.1111/j.1095-8312.2005.00540.x

17. Ramsay J, Silverman BW. Functional data analysis. 2nd ed. Springer Series in Statistics. New York: Springer-Verlag; 2005. Available from: www.springer.com/gp/book/9780387400808.

18. Rivas T, Matías JM, Taboada J, Ordóñez C. Functional experiment design for the analysis of colour changes in granite using new L*a*b* functional colour coordinates. Journal of Computational and Applied Mathematics. 2011;235(16):4701–4716. doi: 10.1016/j.cam.2010.08.005

19. Masner L. Revisionary notes and keys to world genera of Scelionidae (Hymenoptera: Proctotrupoidea). The Memoirs of the Entomological Society of Canada.1976;108(S97):1–97 doi: 10.4039/entm10897fv

20. Peters RS, Krogmann L, Mayer C, Donath A, Gunkel S, Meusemann K, et al. Evolutionary History of the Hymenoptera. Current Biology. 2017;27(7):1013–1018. doi: 10.1016/j.cub.2017.01.027 28343967

21. Tkalcic M, Tasic JF. Colour spaces: perceptual, historical and applicational background. vol. 1. IEEE;2003

22. Schanda J.(Ed). Colorimetry: understanding the CIE system. New Jersey: John Wiley & Sons; 2007.

23. Melgosa M, Trémeau A, Cui G. Colour difference evaluation. Advanced color image processing and analysis New York: Springer New York; 2013. p. 59–79.

24. Mahy M, Van Eycken L, Oosterlinck A. Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV. Color Research & Application. 1994;19(2):105–121.

25. Renoult JP, Kelber A, Schaefer HM. Colour spaces in ecology and evolutionary biology Biological Reviews. 2017;92(1):291–315.

26. Causeur D, Sheu CF, Chu MC, Rufini F. ERP: Significance analysis of event-related potentials data; 2018. Available from: https://CRAN.R-project.org/package=ERP.

27. Gorecki T, Smaga L. fdANOVA: Analysis of variance for univariate and multivariate functional data; 2018. Available from: https://CRAN.R-project.org/package=fdANOVA.

28. Wickham H. tidyverse: Easily Install and Load the’Tidyverse’ R package version 1.2.1. 2017. url:https://CRAN.R-project.org/package=tidyverse

29. Whibley AC, Langlade NB, Andalo C, Hanna AI, Bangham A, Thébaud C, Coen E. Evolutionary paths underlying flower color variation in Antirrhinum. Science. 2006;313(5789):963–966. doi: 10.1126/science.1129161 16917061

30. Galván I, Wakamatsu K. Color measurement of the animal integument predicts the content of specific melanin forms. RSC Advances.2016;6(82):79135–79142. doi: 10.1039/C6RA17463A

31. Shawkey MD, D’Alba L. Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Philosophical Transactions of the Royal Society B: Biological Sciences. 2017;372(1724):20160536. doi: 10.1098/rstb.2016.0536

32. Arenas LM, Walter D, Stevens M. Signal honesty and predation risk among a closely related group of aposematic species. Scientific Reports. 2015;5:11021. doi: 10.1038/srep11021

33. R Core Team RFfSC. R: A Language and Environment for Statistical Computing; 2018. Available from: http://www.R-project.org/.

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden