#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Positive effect of an electrolyzed reduced water on gut permeability, fecal microbiota and liver in an animal model of Parkinson’s disease


Autoři: Laura Bordoni aff001;  Rosita Gabbianelli aff001;  Donatella Fedeli aff001;  Dennis Fiorini aff002;  Ina Bergheim aff003;  Cheng Jun Jin aff004;  Lisa Marinelli aff005;  Antonio Di Stefano aff005;  Cinzia Nasuti aff006
Působiště autorů: School of Pharmacy, Molecular Biology Unit, University of Camerino, Camerino, Italy aff001;  School of Science and Technology, Chemistry Unit, University of Camerino, Camerino, Italy aff002;  Department of Nutritional Sciences, RF Molecular Nutritional Science, University of Vienna, Vienna, Austria aff003;  Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University, Jena, Germany aff004;  Department of Pharmacy, University of "G. D’Annunzio", Chieti, Italy aff005;  School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy aff006
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0223238

Souhrn

There is growing awareness within the scientific community of the strong connection between the inflammation in the intestine and the pathogenesis of Parkinson’s disease (PD). In previous studies we developed a PD animal model exposing pup rats to permethrin (PERM) pesticide. Here, we intended to explore whether in our animal model there were changes in gut permeability, fecal microbiota and hepatic injury. Moreover, we tested if the co-treatment with an electrolyzed reduced (ERW) was effective to protect against alterations induced by PERM. Rats (from postnatal day 6 to 21) were gavaged daily with PERM, PERM+ERW or vehicle and gut, liver and feces were analyzed in 2-months-old rats. Increased gut permeability, measured by FITC-dextran assay, was detected in PERM group compared to control and PERM+ERW groups. In duodenum and ileum, concentration of occludin was higher in control group than those measured in PERM group, whereas only in duodenum ZO-1 was higher in control than those measured in PERM and PERM+ERW groups. Number of inflammatory focis and neutrophils as well as iNOS protein levels were higher in livers of PERM-treated rats than in those of PERM+ERW and control rats. Fecal microbiota analysis revealed that Lachnospira was less abundant and Defluviitaleaceae more abundant in the PERM group, whereas the co-treatment with ERW was protective against PERM treatment since the abundances in Lachnospira and Defluviitaleaceae were similar to those in the control group. Higher abundances of butyrate- producing bacteria such as Blautia, U.m. of Lachnospiraceae family, U.m. of Ruminococcaceae family, Papillibacter, Roseburia, Intestinimonas, Shuttleworthia together with higher butyric acid levels were detected in PERM+ERW group compared to the other groups. In conclusion, the PD animal model showed increased intestinal permeability together with hepatic inflammation correlated with altered gut microbiota. The positive effects of ERW co-treatment observed in gut, liver and brain of rats were linked to changes on gut microbiota.

Klíčová slova:

Animal models – Bacteria – duodenum – Gastrointestinal tract – Ileum – Microbiome – Parkinson disease – Permeability


Zdroje

1. Nasuti C, Brunori G, Eusepi P, Marinelli L, Ciccocioppo R, Gabbianelli R. Early life exposure to permethrin: a progressive animal model of Parkinson's disease. J Pharmacol Toxicol Methods. 2017;83: 80–86. doi: 10.1016/j.vascn.2016.10.003 27756609

2. Fedeli D, Montani M, Bordoni L, Galeazzi R, Nasuti C, Correia-S L, et al. In vivo and in silico studies to identify mechanisms associated with Nurr1 modulation following early life exposure to permethrin in rats. Neuroscience. 2017;340: 411–423. doi: 10.1016/j.neuroscience.2016.10.071 27826104

3. Bordoni L, Nasuti C, Di Stefano A, Marinelli L, Gabbianelli R. Epigenetic Memory of Early-Life Parental Perturbation: Dopamine Decrease and DNA Methylation Changes in Offspring. Oxid Med Cell Longev. 2019;19: 1472623. doi: 10.1155/2019/1472623 30915194

4. Bordoni L, Nasuti C, Fedeli D, Galeazzi R, Laudadio E, Massaccesi L, et al. Early impairment of epigenetic pattern in neurodegeneration: Additional mechanisms behind pyrethroid toxicity. Exp Gerontol. 2019;124: 110629. doi: 10.1016/j.exger.2019.06.002 31175960

5. Nasuti C, Fedeli D, Bordoni L, Montani M, Dus I, Gabbianelli R. Effect of electrolyzed reduced water in an animal model of Parkinson-like disease. In: 2nd European Summer School on Nutrigenomics. September 5–9, 2016, Camerino, Italy: Abstracts. J Nutrigenet Nutrigenomics. 2016;9: 16. doi: 10.1159/000448866

6. Hamasaki T, Harada G, Nakamichi N, Kabayama S, Teruya K, Fugetsu B, et al. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. PLoS One. 2017;12(2): e0171192. doi: 10.1371/journal.pone.0171192 28182635

7. Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJ, Kraneveld AD. Exploring Braak's Hypothesis of Parkinson's Disease. Front Neurol. 2017;8: 37. doi: 10.3389/fneur.2017.00037 28243222

8. Pan-Montojo F and Reichmann H.. Considerations on the role of environmental toxins in idiopathic Parkinson’s disease pathophysiology. Transl Neurodegener. 2014;3: 10. doi: 10.1186/2047-9158-3-10 24826210

9. Lema Tomé CM, Tyson T, Rey NL, Grathwohl S, Britschgi M, Brundin P. Inflammation and α-synuclein's prion-like behavior in Parkinson's disease—is there a link? Mol Neurobiol. 2013;47(2): 561–574. doi: 10.1007/s12035-012-8267-8 22544647

10. Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, et al. Colonic bacterial composition in Parkinson’s disease. Mov Disord. 2015;30: 1351–1360. doi: 10.1002/mds.26307 26179554

11. Hasegawa S, Goto S, Tsuji H, Okuno T, Asahara T, Nomoto K, et al. Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLoS One. 2015;10: e0142164. doi: 10.1371/journal.pone.0142164 26539989

12. Caputi V, Giron MC. Microbiome-Gut-Brain Axis and Toll-Like Receptors in Parkinson's Disease. Int J Mol Sci. 2018; 19(6):1689.

13. Perez-Pardo P, Dodiya HB, Engen PA, Forsyth CB, Huschens AM, Shaikh M, et al. Role of TLR4 in the gut-brain axis in Parkinson’s disease: a translational study from men to mice. Gut. 2019;68(5): 829–843. doi: 10.1136/gutjnl-2018-316844 30554160

14. Nasuti C, Gabbianelli R, Falcioni ML, Di Stefano A, Sozio P, Cantalamessa F. Dopaminergic system modulation, behavioural changes, and oxidative stress after neonatal administration of pyrethroids. Toxicology. 2007;229: 194–205. doi: 10.1016/j.tox.2006.10.015 17140720

15. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007;13: 688–694. doi: 10.1038/nm1577 17486089

16. Hamasaki T, Nakamichi N, Teruya K, Shirahata S. Removal efficiency of radioactive cesium and iodine ions by a flow-type apparatus designed for electrochemically reduced water production. PLoS One. 2014;9(7): e102218. doi: 10.1371/journal.pone.0102218 25029447

17. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6): 1313–1321. doi: 10.1002/hep.20701 15915461

18. Sellmann C, Priebs J, Landmann M, Degen C, Engstler AJ, Jin CJ, et al. Diets rich in fructose, fat or fructose and fat alter intestinal barrier function and lead to the development of nonalcoholic fatty liver disease over time. J Nutr Biochem. 2015;26(11): 1183–92. doi: 10.1016/j.jnutbio.2015.05.011 26168700

19. Jin CJ, Engstler AJ, Sellmann C, Ziegenhardt D, Landmann M, Kanuri G, et al. Sodium butyrate protects mice from the development of the early signs of non-alcoholic fatty liver disease: role of melatonin and lipid peroxidation. Br J Nutr. 2016;116(10): 1682–1693.

20. Sellmann C, Baumann A, Brandt A, Jin CJ, Nier A, Bergheim I. Oral Supplementation of Glutamine Attenuates the Progression of Nonalcoholic Steatohepatitis in C57BL/6J Mice. J Nutr. 2017;147(11): 2041–2049. doi: 10.3945/jn.117.253815 28931589

21. Peralta C, Bulbena O, Xaus C, Prats N, Cutrin JC, Poli G, et al. Ischemic preconditioning: a defense mechanism against the reactive oxygen species generated after hepatic ischemia reperfusion. Transplantation. 2002;73(8): 1203–1211. doi: 10.1097/00007890-200204270-00004 11981410

22. Nasuti C, Coman MM, Olek RA, Fiorini D, Verdenelli MC, Cecchini C, et al. Changes on fecal microbiota in rats exposed to permethrin during postnatal development. Environ Sci Pollut Res Int. 2016;23(11): 10930–10937. doi: 10.1007/s11356-016-6297-x 26898931

23. Milani C, Hevia A, Foroni E, Duranti S, Turroni F, Lugli GA et al. Assessing the fecal microbiota: an optimized ion torrent 16S rRNA gene-based analysis protocol. PLoS One. 2013;8: e68739. doi: 10.1371/journal.pone.0068739 23869230

24. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5): 335–336. doi: 10.1038/nmeth.f.303 20383131

25. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26: 2460–2461. doi: 10.1093/bioinformatics/btq461 20709691

26. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41: D590–596. doi: 10.1093/nar/gks1219 23193283

27. Zhu Y, Sun Y, Wang C, Li F. Impact of dietary fibre:starch ratio in shaping caecal archaea revealed in rabbits. J Anim Physiol Anim Nutr (Berl). 2017;101(4): 635–640.

28. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71: 8228–8235. doi: 10.1128/AEM.71.12.8228-8235.2005 16332807

29. La Mura V, Pasarín M, Rodriguez-Vilarrupla A, García-Pagán JC, Bosch J, Abraldes JG. Liver sinusoidal endothelial dysfunction after LPS administration: a role for inducible-nitric oxide synthase. J Hepatol. 2014;61(6): 1321–7. doi: 10.1016/j.jhep.2014.07.014 25038487

30. Fujita K, Seike T, Yutsudo N, Ohno M, Yamada H, Yamaguchi H, et al. Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. PLoS One. 2009;30(9): e7247.

31. Shin DW, Yoon H, Kim HS, Choi YJ, Shin CM, Park YS, et al. Effects of Alkaline-Reduced Drinking Water on Irritable Bowel Syndrome with Diarrhea: A Randomized Double-Blind, Placebo-Controlled Pilot Study. Evid Based Complement Alternat Med. 2018;15. doi: 10.1155/2018/9147914 29849734

32. Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A. 2014;111(6): 2247–52. doi: 10.1073/pnas.1322269111 24390544

33. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, et al. Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host Microbe. 2015;17(5): 662–71. doi: 10.1016/j.chom.2015.03.005 25865369

34. Xiao X, Nakatsu G, Jin Y, Wong S, Yu J, Lau JY. Gut Microbiota Mediates Protection Against Enteropathy Induced by Indomethacin. Sci Rep. 2017;7: 40317. doi: 10.1038/srep40317 28067296

35. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front Microbiol. 2016;7: 979. doi: 10.3389/fmicb.2016.00979 27446020

36. Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003;62(1): 67–72. doi: 10.1079/PNS2002207 12740060

37. Million M, Raoult D. Linking gut redox to human microbiome. Human Microbiome Journal. 2018. doi: 10.1016/j.humic.2018.07.002

38. Vorobjova NV. Selective stimulation of the growth of anaerobic microflora in the human intestinal tract by electrolyzed reducing water. Med Hypotheses. 2005;64: 543–546. doi: 10.1016/j.mehy.2004.07.038 15617863

39. Higashimura Y, Baba Y, Inoue R, Takagi T, Uchiyama K, Mizushima K, et al. Effects of molecular hydrogen-dissolved alkaline electrolyzed water on intestinal environment in mice. Med Gas Res. 2018;8(1): 6–11. doi: 10.4103/2045-9912.229597 29770190

40. Blachier F, Davila AM, Mimoun S, Benetti PH, Atanasiu C, Andriamihaja M, et al. Luminal sulfide and large intestine mucosa: friend or foe? Amino Acids. 2010;39(2): 335–47. doi: 10.1007/s00726-009-0445-2 20020161


Článek vyšel v časopise

PLOS One


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#