#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Modeling the residential distribution of enrolled students to assess boundary-induced disparities in public school access


Autoři: Louie John M. Rubio aff001;  Damian N. Dailisan aff001;  Maria Jeriesa P. Osorio aff002;  Clarissa C. David aff002;  May T. Lim aff001
Působiště autorů: National Institute of Physics, University of the Philippines Diliman, Quezon City, Philippines aff001;  College of Mass Communication, University of the Philippines Diliman, Quezon City, Philippines aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222766

Souhrn

Given school enrollments but in the absence of a student residence census, we present a gravity-like model to infer the residential distribution of enrolled students across various administrative units. Multi-scale analysis of the effects of aggregation across different administrative levels allows for the identification of administrative units with sub-optimally located schools and highlights the challenges in allocating resources. Using this method, we verify that the current scheme of free cross-enrollment across administrative boundaries is needed in achieving universal education in the Philippines.

Klíčová slova:

Data visualization – England – Children – Public administration – Schools – Transportation – United Kingdom – Philippines


Zdroje

1. United Nations Division for Sustainable Development. Goal 4: Sustainable Development Knowledge Platform; 2015.

2. Philippine Statistics Authority. Sustainable Development Goals Watch; 2018.

3. United Nations Statistics Division. Learning archives; 2016.

4. Maligalig D, Cuevas S. Is the net enrollment rate estimate of the Philippines accurate? Asian Development Bank; July 2010. ISSN 2218-2675, No. 2.

5. Albert JRG, David CC, Monterola SC, Lazo LS. Addressing late school entry and other demand-side barriers to primary schooling. Philippine Institute for Development Studies; 2012. ISSN 1656-5266, No. 2012-08.

6. Read L, Atinc TM. Investigations into Using Data to Improve Learning—Philippines Case Study. Washington D.C.: Brookings Institution; 2017.

7. CheckMySchool. SDG indicators; 2018.

8. Department of Education—Support. Bulletin (LIS K-12); 2018.

9. Anderson JE. The Gravity Model. Annual Review of Economics. 2011;3(1):133–160. doi: 10.1146/annurev-economics-111809-125114

10. Davidson KB. Accessibility in transport/land-use modelling and assessment. Environment and Planning A. 1977;9(12):1401–1416. doi: 10.1068/a091401

11. David CC, Monterola SLC, Paguirigan A, Legara EFT, Tarun AB, Batac RC, et al. School hazard vulnerability and student learning. International Journal of Educational Research. 2018; https://doi.org/10.1016/j.ijer.2018.07.005.

12. Figueroa LL, Lim S, Lee J. Spatial analysis to identify disparities in Philippine public school facilities. Regional Studies, Regional Science. 2016;3(1):1–27. doi: 10.1080/21681376.2015.1099465

13. DepEd. DO 19, s. 1994—Guidelines on the Acquisition, Construction and Maintenance of Public Elementary and Secondary School Sites, Buildings and Grounds; 1994. Available from: http://www.deped.gov.ph/orders/do-19-s-1994.

14. Senate of the Philippines. Chiz seeks titling of all public school sites; 2015.

15. Glaeser EL, Kahn ME, Rappaport J. Why do the poor live in cities? The role of public transportation. Journal of Urban Economics. 2008. doi: 10.1016/j.jue.2006.12.004

16. Figlio DN, Lucas ME. What’s in a Grade? School Report Cards and the Housing Market. American Economic Review. 2004;94(3):591–604. doi: 10.1257/0002828041464489

17. Albacea ZVI, Gironella AN. Where can we find the poor in the Philippines? The Philippine Statistician. 2000;49(1-4):30–37.

18. Boquet Y. The Growth of Greater Manila. In: The Philippine Archipelago. Springer; 2017. p. 521–566.

19. Graves J. The academic impact of multi-track year-round school calendars: A response to school overcrowding. Journal of Urban Economics. 2010;67(3):378–391. https://doi.org/10.1016/j.jue.2009.11.004.

20. DepEd. DO 62, s. 2004—Adoption of double shift policy in public school to address classroom shortage; 2004. Available from: http://www.deped.gov.ph/2004/12/13/do-62-s-2004-adoption-of-double-shift-policy-in-public-school-to-address-classroom-shortage/.

21. Cacho RM, Cacho LC, Raňeses MM. Decoding double shift effects on pupils, parents and teachers’ lived experiences: Alternative inputs for policy improvement. International Journal of Research. 2019;8(1):77–88.

22. Maligalig DS, Caoli-Rodriguez RB, Martinez A, Cuevas S. Education outcomes in the Philippines; 2010.

23. UNESCO Institute for Statistics. Pupil-teacher ratio by level of education (headcount basis); 2013. Available from: http://data.uis.unesco.org/index.aspx?queryid=180.

24. DepEd. DO 7, s. 2015—Hiring guidelines for Teacher I positions for School Year (SY) 2015-2016; 2015. Available from: https://www.deped.gov.ph/2015/03/27/do-7-s-2015-hiring-guidelines-for-teacher-i-positions-for-school-year-sy-2015-2016/.

25. Philippine Statistics Authority. Data Kit of Official Philippine Statistics (DATOS); 2002.

26. Philippine Statistics Authority. Philippine Standard Geographic Code Publication (September 2017 Release); 2017.

27. Department for Education. School capacity: academic year 2016 to 2017; 2018.

28. Department for Education. Locations of all UK primary and secondary schools -⁠ a Freedom of Information request to Department for Education; 2016.

29. Office for National Statistics. Local Authority Districts (December 2015) Full Extent Boundaries in Great Britain; 2017.

30. Boquet Y. Spatial Structures of the Philippines: Urbanization and Regional Inequalities. In: The Philippine Archipelago. Springer; 2017. p. 419–464.

31. Adair LS, Popkin BM, Akin JS, Guilkey DK, Gultiano S, Borja J, et al. Cohort Profile: The Cebu Longitudinal Health and Nutrition Survey. International Journal of Epidemiology. 2010;40(3):619–625. doi: 10.1093/ije/dyq085 20507864

32. Narboneta C, Teknomo K. A Study of Metro Manila’s Public Transportation Sector: Implementing a Multimodal Public Transportation Route Planner. Asian Transport Studies. 2016; p. 460–477.

33. Lall SV, Selod H, Shalizi Z. Rural-Urban Migration in Developing Countries: A Survey of Theoretical Predictions and Empirical Findings. Policy Research Working Paper; No 3915 World Bank. 2006.


Článek vyšel v časopise

PLOS One


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Čelistně-ortodontické kazuistiky od A do Z
nový kurz
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA

Mepolizumab v reálné klinické praxi
Autoři: MUDr. Eva Voláková, Ph.D.

BONE ACADEMY 2025
Autoři: prof. MUDr. Pavel Horák, CSc., doc. MUDr. Ludmila Brunerová, Ph.D., doc. MUDr. Václav Vyskočil, Ph.D., prim. MUDr. Richard Pikner, Ph.D., MUDr. Olga Růžičková, MUDr. Jan Rosa, prof. MUDr. Vladimír Palička, CSc., Dr.h.c.

Cesta pacienta nejen s SMA do nervosvalového centra
Autoři: MUDr. Jana Junkerová, MUDr. Lenka Juříková

Svět praktické medicíny 2/2025 (znalostní test z časopisu)

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#