Continuous ratings of movie watching reveal idiosyncratic dynamics of aesthetic enjoyment

Autoři: Ayse Ilkay Isik aff001;  Edward A. Vessel aff001
Působiště autorů: Neuroscience Department, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223896


Visual aesthetic experiences unfold over time, yet most of our understanding of such experiences comes from experiments using static visual stimuli and measuring static responses. Here, we investigated the temporal dynamics of subjective aesthetic experience using temporally extended stimuli (movie clips) in combination with continuous behavioral ratings. Two groups of participants, a rate group (n = 25) and a view group (n = 25), watched 30-second video clips of landscapes and dance performances in test and retest blocks. The rate group reported continuous ratings while watching the videos, with an overall aesthetic judgment at the end of each video, in both test and retest blocks. The view group, however, passively watched the videos in the test block, reporting only an overall aesthetic judgment at the end of each clip. In the retest block, the view group reported both continuous and overall judgments. When comparing the two groups, we found that the task of making continuous ratings did not influence overall ratings or agreement across participants. In addition, the degree of temporal variation in continuous ratings over time differed substantially by observer (from slower “integrators” to “fast responders”), but less so by video. Reliability of continuous ratings across repeated exposures was in general high, but also showed notable variance across participants. Together, these results show that temporally extended stimuli produce aesthetic experiences that are not the same from person to person, and that continuous behavioral ratings provide a reliable window into the temporal dynamics of such aesthetic experiences while not materially altering the experiences themselves.

Klíčová slova:

Behavior – Dynamical systems – Emotions – Happiness – Psychological attitudes – Regression analysis – Research validity – Integrators


1. Leder H, Belke B, Oeberst A, Augustin MD. A model of aesthetic appreciation and aesthetic judgments. Br J Psychol. 2004;95: 489–508. doi: 10.1348/0007126042369811 15527534

2. Chatterjee A, Vartanian O. Neuroaesthetics. Trends Cogn Sci. 2014;18: 370–375. doi: 10.1016/j.tics.2014.03.003 24768244

3. Belfi AM, Kasdan A, Rowland J, Vessel E, Starr GG, Poeppel D. Rapid Timing of Musical Aesthetic Judgments. J Exp Psychol Gen. 2018; CITATION

4. Mullin C, Hayn-Leichsenring GU, Redies C, Wagemans J. The gist of beauty: An investigation of aesthetic perception in rapidly presented images. Hum Vis Electron Imaging. 2017;2017: 248–256. doi: 10.2352/ISSN.2470-1173.2017.14.HVEI-152

5. Schwabe K, Menzel C, Mullin C, Wagemans J, Redies C. Gist Perception of Image Composition in Abstract Artworks. Iperception. 2018;9. doi: 10.1177/2041669518780797 29977489

6. Brieber D, Nadal M, Leder H, Rosenberg R. Art in time and space: context modulates the relation between art experience and viewing time. Martinez LM, editor. PLoS One. 2014;9: 1–8. doi: 10.1371/journal.pone.0099019 24892829

7. Smith JK, Smith L. Spending Time on Art. Empir Stud Arts. 2001;19: 229–236. doi: 10.2190/5MQM-59JH-X21R-JN5J

8. Heidenreich SM, Turano KA. Where does one look when viewing artwork in a museum? Empir Stud Arts. 2011;29: 51–72. doi: 10.2190/EM.29.1.d

9. Jacobsen T, Schubotz RI, Höfel L, Cramon DY V. Brain correlates of aesthetic judgment of beauty. Neuroimage. 2006;29: 276–285. doi: 10.1016/j.neuroimage.2005.07.010 16087351

10. Sloboda JA, Lehmann AC. Tracking Performance Correlates of Changes in Perceived Intensity of Emotion During Different Interpretations of a Chopin Piano Prelude. Music Percept An Interdiscip J. 2001;19: 87–120.

11. Rozin A, Rozin P, Goldberg E. The feeling of music past. Music Percept. 2004;22: 15–39. doi: 10.1109/TDEI.2009.5211872

12. Fredrickson BL, Kahneman D. Duration neglect in retrospective evaluations of affective episodes. J Pers Soc Psychol. 1993;65: 45–55. doi: 10.1037//0022-3514.65.1.45 8355141

13. Brielmann A, Pelli DG. Beauty requires thought The experience of beauty is selectively impaired by a cognitive task. 2016; 3.

14. Belfi AM, Vessel E, Brielmann A, Isik AI, Chatterjee A, Leder H, et al. Dynamics of aesthetic experience are reflected in the default-mode network. Neuroimage. 2019;188: 584–597. doi: 10.1016/j.neuroimage.2018.12.017 30543845

15. Vartanian O, Skov M. Neural correlates of viewing paintings: Evidence from a quantitative meta-analysis of functional magnetic resonance imaging data. Brain Cogn. 2014;87: 52–56. doi: 10.1016/j.bandc.2014.03.004 24704947

16. Leder H. Determinants of preference: When do we like what we know? Empir Stud Arts. 2001;19: 201–211. doi: 10.2190/5TAE-E5CV-XJAL-3885

17. Vessel E, Maurer N, Denker AH, Starr GG. Stronger shared taste for natural aesthetic domains than for artifacts of human culture. Cognition. 2018;179: 121–131. doi: 10.1016/j.cognition.2018.06.009 29936343

18. Christensen JF, Calvo-Merino B. Dance as a subject for empirical aesthetics. Psychol Aesthetics, Creat Arts. 2013;7: 76–88. doi: 10.1037/a0031827

19. Calvo-Merino B, Jola C, Glaser D, Haggard P. Towards a sensorimotor aesthetics of performing art. Conscious Cogn. 2008;17: 911–922. doi: 10.1016/j.concog.2007.11.003 18207423

20. Zajonc, Robert B. Attitudinal effects of mere exposure. J Exp Soc Psychol. 1968;9: 1–28. doi: 10.1016/0022-1031(71)90078-3

21. Reber R, Winkielman P, Schwarz N. Effects of perceptual fluency on affective judgments. Psychol Sci. 1998;9: 45–48.

22. Reber R, Schwarz N, Winkielman P. Processing fluency and aesthetic pleasure: is beauty in the perceiver’s processing experience? Personal Soc Psychol Rev. 2004;8: 364–82. doi: 10.1207/s15327957pspr0804_3 15582859

23. Biederman I, Vessel E. Perceptual Pleasure and the Brain: A novel theory explains why the brain craves information and seeks it through the senses. Am Sci. 2006;94: 247–253. doi: 10.1511/2006.3.247

24. Berlyne DE. Novelty, complexity, and hedonic value. Percept Psychophys. 1970;8: 279–286. doi: 10.3758/BF03212593

25. Park J, Shimojo E, Shimojo S. Roles of familiarity and novelty in visual preference judgments are segregated across object categories. Proc Natl Acad Sci. 2010;107: 14552–14555. doi: 10.1073/pnas.1004374107 20679235

26. Hutcherson CA, Goldin PR, Ochsner KN, Gabrieli JDE, Feldman Barrett L, Gross JJ. Attention and emotion: Does rating emotion alter neural responses to amusing and sad films? Neuroimage. 2005;27: 656–668. doi: 10.1016/j.neuroimage.2005.04.028 15946863

27. Madsen CK, Coggiola JC. The Effect of Manipulating a CRDI Dial on the Focus of Attention of Musicians/nonmusicians and Perceived Aesthetic Response. Bull Counc Res Music Educ. 2001; 13–22.

28. Leder H, Goller J, Rigotti T, Forster M. Private and shared taste in art and face appreciation. Front Hum Neurosci. 2016;10: 1–7. doi: 10.3389/fnhum.2016.00001

29. Schubert E. Reliability issues regarding the beginning, middle and end of continuous emotion ratings to music. Psychol Music. 2012;41: 350–371. doi: 10.1177/0305735611430079

30. Schubert TW, Zickfeld JH, Seibt B, Fiske AP. Moment-to-moment changes in feeling moved match changes in closeness, tears, goosebumps, and warmth: time series analyses. Cogn Emot. 2018;32: 174–184. doi: 10.1080/02699931.2016.1268998 28024440

31. Peirce JW. Generating Stimuli for Neuroscience Using PsychoPy. Front Neuroinform. 2008;2: 10. doi: 10.3389/neuro.11.010.2008 19198666

32. Snaith RP, Hamilton M, Morley S, Humayan A, Hargreaves D, Trigwell P. A scale for the assessment of hedonic tone. The Snaith-Hamilton Pleasure Scale. Br J Psychiatry. 1995;167: 99–103. doi: 10.1192/bjp.167.1.99 7551619

33. Watson D, Clark LA, Tellegen A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J Pers Soc Psychol. 1988;54: 1063–1070. doi: 10.1037//0022-3514.54.6.1063 3397865

34. Spielberger CD, Gorsuch RL, Lushene RE. The State-Trait Anxiety Inventory. MANUAL. 1970; 1–23.

35. Vessel E, Starr GG, Rubin N. Art reaches within: Aesthetic experience, the self and the default mode network. Front Neurosci. 2013;7: 1–9. doi: 10.3389/fnins.2013.00001

36. Jacobsen T, Buchta K, Kohler M, Schroger E. The primacy of beauty in judging the aesthetics of objects. Psychol Rep. 2004;94: 1253–1260. doi: 10.2466/pr0.94.3c.1253-1260 15362400

37. Menninghaus W, Wagner V, Hanich J, Wassiliwizky E, Kuehnast M, Jacobsen T. Towards a psychological construct of being moved. PLoS One. 2015;10: 33–35. doi: 10.1371/journal.pone.0128451 26042816

38. Bates DM, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw. 2015;67. doi: 10.18637/jss.v067.i01

39. Kliegl R, Wei P, Dambacher M, Yan M, Zhou X. Experimental effects and individual differences in linear mixed models: Estimating the relationship between spatial, object, and attraction effects in visual attention. Front Psychol. 2011;1: 1–12. doi: 10.3389/fpsyg.2010.00238 21833292

40. Bates DM, Kliegl R, Vasishth S, Baayen H. Parsimonious Mixed Models. arXiv:150604967. 2015;

41. Lenth R V. Least-Squares Means: The R Package lsmeans. J Stat Softw. 2016;69. doi: 10.18637/jss.v069.i02

42. Box GEP, Cox DR. An Analysis of Transformations. J R Stat Soc Ser B (Methodological),. 1964;26: 211–252. doi: 10.1016/0098-1354(90)87027-M

43. Corey DM, Dunlap WP, Burke MJ. Averaging correlations: Expected values and bias in combined pearson rs and fisher’s z transformations. J Gen Psychol. 1998;125: 245–261. doi: 10.1080/00221309809595548

44. Bronstad PM, Russell R. Beauty is in the ‘we’ of the beholder: Greater agreement on facial attractiveness among close relations. Perception. 2007;36: 1674–1681. doi: 10.1068/p5793 18265847

45. Germine L, Russell R, Bronstad PM, Blokland GA., Smoller JW, Kwok H, et al. Individual aesthetic preferences for faces are shaped mostly by environments, not genes. Curr Biol. 2015;25: 2684–2689. doi: 10.1016/j.cub.2015.08.048 26441352

46. Yue X, Biederman I, Mangini MC, Malsburg C von der, Amir O. Predicting the psychophysical similarity of faces and non-face complex shapes by image-based measures. Vision Res. 2012;55: 41–46. doi: 10.1016/j.visres.2011.12.012 22248730

47. Lades M, Vorbrüggen JC, Buhmann J, Lange J, von der Malsburg C, Würtz, Rolf P, et al. Distortion invariant object recognition in the dynamic link architecture. IEEE Trans Comput. 1993;42: 300–311.

48. Fredrickson WE. Elementary, Middle, and High School Student Perceptions of Tension in Music. J Res Music Educ. 1997;45: 626–635.

49. Schubert E. Correlation Analysis of Continuous Emotional Response to Music: Correcting for the Effects of Serial Correlation. Music Sci. 2002;5: 213–236. doi: 10.1177/10298649020050S108

50. Graham DJ, Stockinger S, Leder H. An island of stability: Art images and natural scenes—but not natural faces-show consistent esthetic response in Alzheimer’s-related dementia. Front Psychol. 2013;4: 1–8. doi: 10.3389/fpsyg.2013.00001

51. Lloyd S. Least squares quantization in PCM. IEEE Trans Inf Theory. 1982;28: 129–137. doi: 10.1109/TIT.1982.1056489

52. Pedregosa F, Varoquaux G, Gramfort A, Vincent M, Thirion B, Olivier G, et al. Scikit-learn: Machine Learning in Python. J Mach Learn Res. 2011;12: 2825–2830. doi: 10.1007/s13398-014-0173-7.2

53. Vessel E, Rubin N. Beauty and the beholder: Highly individual taste for abstract, but not real-world images. J Vis. 2010;10: 1–14. doi: 10.1167/10.2.18 20462319

54. Schubert TW, Zickfeld JH, Seibt B, Fiske AP. Moment-to-moment changes in feeling moved match changes in closeness, tears, goosebumps, and warmth: time series analyses Supplementary Material. Cogn Emot. 2018;32: 174–184. doi: 10.1080/02699931.2016.1268998 28024440

55. Pugach C, Leder H, Graham DJ. How Stable Are Human Aesthetic Preferences Across the Lifespan? Front Hum Neurosci. 2017;11: 1–11. doi: 10.3389/fnhum.2017.00001

56. Kaplan S, Kaplan R, Wendt JS. Rated preference and complexity for natural and urban visual material. Percept Psychophys. 1972;12: 354–356. doi: 10.3758/BF03207221

57. Christensen JF, Pollick FE, Lambrechts A, Gomila A. Affective responses to dance. Acta Psychol (Amst). 2016;168: 91–105. doi: 10.1016/j.actpsy.2016.03.008 27235953

58. Christensen JF, Gomila A, Gaigg SB, Sivarajah N, Calvo-Merino B. Dance expertise modulates behavioral and psychophysiological responses to affective body movement. J Exp Psychol Hum Percept Perform. 2016;42: 1139–1147. doi: 10.1037/xhp0000176 26882181

Článek vyšel v časopise


2019 Číslo 10