Genetic mapping of distal femoral, stifle, and tibial radiographic morphology in dogs with cranial cruciate ligament disease


Autoři: Eleni Healey aff001;  Rachel J. Murphy aff001;  Jessica J. Hayward aff002;  Marta Castelhano aff003;  Adam R. Boyko aff002;  Kei Hayashi aff003;  Ursula Krotscheck aff003;  Rory J. Todhunter aff003
Působiště autorů: College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America aff001;  Department of Biomedical Sciences and Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America aff002;  Department of Clinical Sciences and Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223094

Souhrn

Cranial cruciate ligament disease (CCLD) is a complex trait. Ten measurements were made on orthogonal distal pelvic limb radiographs of 161 pure and mixed breed dogs with, and 55 without, cranial cruciate partial or complete ligament rupture. Dogs with CCLD had significantly smaller infrapatellar fat pad width, higher average tibial plateau angle, and were heavier than control dogs. The first PC weightings captured the overall size of the dog’s stifle and PC2 weightings reflected an increasing tibial plateau angle coupled with a smaller fat pad width. Of these dogs, 175 were genotyped, and 144,509 polymorphisms were used in a genome-wide association study with both a mixed linear and a multi-locus model. For both models, significant (pgenome <3.46×10−7 for the mixed and< 6.9x10-8 for the multilocus model) associations were found for PC1, tibial diaphyseal length and width, fat pad base length, and femoral and tibial condyle width at LCORL, a known body size-regulating locus. Other body size loci with significant associations were growth hormone 1 (GH1), which was associated with the length of the fat pad base and the width of the tibial diaphysis, and a region on CFAX near IRS4 and ACSL4 in the multilocus model. The tibial plateau angle was associated significantly with a locus on CFA10 in the linear mixed model with nearest candidate genes BET1 and MYH9 and on CFA08 near candidate genes WDHD1 and GCH1. MYH9 has a major role in osteoclastogenesis. Our study indicated that tibial plateau slope is associated with CCLD and a compressed infrapatellar fat pad, a surrogate for stifle osteoarthritis. Because of the association between tibial plateau slope and CCLD, and pending independent validation, these candidate genes for tibial plateau slope may be tested in breeds susceptible to CCLD before they develop disease or are bred.

Klíčová slova:

Dogs – Fats – Genetic loci – Genome-wide association studies – Ligaments – Mammalian genomics – Pets and companion animals – Tibia


Zdroje

1. Witsberger TH, Villamil A, Schultz LG, Hahn AW, Cook JL. Prevalence of and risk factors for hip dysplasia and cranial cruciate ligament deficiency in dogs. Journal of the American Veterinary Medical Association. 2008;232:1818–24. doi: 10.2460/javma.232.12.1818 18598150

2. Taylor-Brown FE, Meeson RL, Brodbelt DC, Church DB, McGreevy PD, Thomson PC, et al. Epidemiology of cranial cruciate ligament disease diagnosis in dogs attending primary-care veterinary practices in England. Veterinary Surgery. 2015;44:777–83. doi: 10.1111/vsu.12349 26118493

3. Whitehair JG, Vasseur PB, Willits NH. Epidemiology of cranial cruciate ligament rupture in dogs. Journal of the American Veterinary Medical Association. 1993;203:1016–9. 8226247

4. An B, Xia J, Chang T, Wang X, Miao J, Xu L, et al. Genome-wide association study identifies loci and candidate genes for internal organ weights in Simmental beef cattle. Physiologic Genomcis. 2018;50(7):523–31.

5. Adams P, Bolus R, Middleton S, Moores AP, Grierson J. Influence of signalment on developing cranial cruciate rupture in dogs in the UK. Journal of Small Animal Practice. 2011;52:347–52. doi: 10.1111/j.1748-5827.2011.01073.x 21651558

6. Duval JM, Budsberg SC, Flo GL, Sammarco JL. Breed, sex, and body weight as risk factors for rupture of the cranial cruciate ligament in young dogs. Journal of the American Veterinary Medical Association. 1999;215:811–4. 10496133

7. Ekenstedt KJ, Minor KM, Rendahl AK, Conzemius MG. DNM1 mutation status, sex, and sterilization status of a cohort of Labrador retrievers with and without cranial cruciate ligament rupture. Canine Genetics and Epidemiology. 2017;4:2. doi: 10.1186/s40575-017-0041-9 28168039

8. Morris E, Lipowitz AJ. Comparison of tibial plateau angles in dogs with and without cranial cruciate ligament injuries. Journal of the American Veterinary Medical Association. 2001;218:363–6. doi: 10.2460/javma.2001.218.363 11201561

9. Haynes KH, Biskup A, Freeman A, Conzemius MG. Effect of tibial plateau angle on cranial cruciate ligament strain: an ex vivo study in the dog. Veterinary Surgery. 2015;44:46–9. doi: 10.1111/j.1532-950X.2014.12219.x 24902869

10. Reif U, Probst CW. Comparison of tibial plateau angles in normal and cranial cruciate deficient stifles of Labrador retrievers. Veterinary Surgery. 2003;32:385–9. doi: 10.1053/jvet.2003.50047 12866002

11. Fujita Y, Hara Y, Ochi H, Nezu Y, Harada Y, Yogo T, et al. `The possible role of the tibial plateau angle for the severity of osteoarthritis in dogs with cranial cruciate ligament rupture. Journal of Veterinary Medical Science. 2006;68(7):675–9. doi: 10.1292/jvms.68.675 16891779

12. Guénégo L, Payot M, Charru P, Verwaerde P. Comparison of tibial anatomical-mechanical axis angle between predisposed dogs and dogs at low risk for cranial cruciate ligament rupture. Veterinary Journal. 2017;225:35–41.

13. Wilke VL, Zhang S, Evans RB, Conzemius MG, Rothschild MF. Identification of chromosomal regions associated with cranial cruciate ligament rupture in a population of Newfoundlands. American Journal of Veterinary Research. 2009;70(8):1013–7. doi: 10.2460/ajvr.70.8.1013 19645583

14. Baird AEG, Carter SD, Innes JF, Ollier WE, Short AD. Genome-wide association study identifies genomic regions of association for cruciate ligament rupture in Newfoundland dogs. Animal Genetics. 2014b;45:542–9. doi: 10.1111/age.12162 24835129

15. Baird AEG, Carter SD, Innes JF, Ollier WE, Short AD. Genetic basis of cranial cruciate ligament rupture (CCLR) in dogs. Connective Tissue Research. 2014a;55:275–81. doi: 10.3109/03008207.2014.910199 24684544

16. Baker LA, Kirkpatrick B, Rosa GJ, Gianola D, Valente B, Sumner JP, et al. Genome-wide association analysis in dogs implicates 99 loci as risk variants for anterior cruciate ligament rupture. PLos One. 2017;12:e0173810. doi: 10.1371/journal.pone.0173810 28379989

17. Huang M, Hayward JJ, Corey E, Garrison SJ, Wagner GR, Krotscheck U, et al. A novel iterative mixed model to remap three complex orthopedic traits in dogs. PLoS One. 2017;12:e0176932. doi: 10.1371/journal.pone.0176932 28614352

18. Baker LA, M. RGJ, Hao Z, Piazza A, Hoffman C, Binversie EE, et al. Multivariate genome-wide association analysis identifies novel and relevant variants associated with anterior cruciae ligament rupture risk in the dog model. BMC Genetics. 2018;19(1):39. doi: 10.1186/s12863-018-0626-7 29940858

19. Fealey MJ, Li J, Todhunter RJE, Krostscheck U, Hayashi K, McConkey MJ, et al. Genetic mapping of principal components of canine pelvic morphology. Canine Genetics and Epidemiology. 2017;4:4. doi: 10.1186/s40575-017-0043-7 28352471

20. Hayward JJ, Castelhano MG, Oliveira KC, Corey E, Balkman C, Baxter TL, et al. Complex disease and phenotype mapping in the domestic dog. Nature Communications. 2016;7:10460. doi: 10.1038/ncomms10460 26795439

21. Team RC. A language and environment for statistical computing: https://www.R-project.org/; 2018.

22. Purcell S, Neale B, Todd-Brown K, Ferreira MA, Bender D, Maller J, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics. 2007;81:559–75. doi: 10.1086/519795 17701901

23. Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for associatoin studies. Naure Genetics. 2012;44:821–4.

24. Liu X, Huang M, Fan B, Buckler ES, Zhang Z. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLoS Genet. 2016;12(2):e1005767. doi: 10.1371/journal.pgen.1005767 26828793; PubMed Central PMCID: PMC4734661.

25. Brooks SA, Stick J, Braman A, Palermo K, Robinson NE, Ainsworth DM. Identification of loci affecting sexually dimorphic patterns for height and recurrent laryngeal neuropthy risk in American Belgian draft horses. Physiologic Genomcis. 2018;(September 28).

26. Bhuiyan MSA, Lim D, Park M, Lee S, Kim Y, Gondro C, et al. Functional partitioning of genomic variance and genome-wide association study for carcass traits in Korean Hanwood cattle using imputed sequence level SNP data. Frontiers in Genetics. 2018;9:217. doi: 10.3389/fgene.2018.00217 29988410

27. Boyko AR, Quignon P, Li L, Schoenebeck JJ, Degenhardt JD, Lohmueller KE, et al. A simple genetic architecture underlies morphological variation in dogs. PLoS biology. 2010;8(8):e1000451. doi: 10.1371/journal.pbio.1000451 20711490

28. Vaysse A, Ratnakumar A, Derrien T, Axelsson E, Rosengren Pielberg G, Sigurdsson S, et al. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS genetics. 2011;7(10):e1002316. doi: 10.1371/journal.pgen.1002316 22022279

29. Plassais J, Rimbault M, Williams FJ, Davis BW, Schoenebeck JJ, Osrander EA. Analysis of large versus small dogs reveals three genes on the canine X chromosome associated with body weight, muscling and back fat thickness. PLoS Genet. 2017;13(3):e1006661. doi: 10.1371/journal.pgen.1006661 28257443

30. Wilke VL, Robinson DA, Evans RB, Rothschild MF, Conzemius MG. Estimate of the annual economic impact of treatment of cranial cruciate ligament injury in dogs in the United States. Journal of the American Veterinary Medical Association. 2005;227(10):1604–7. doi: 10.2460/javma.2005.227.1604 16313037

31. von Pfeil DJF, Kowaleski MP, Glassman M, Dejardin LM. Results of a survey of Veterinary Orthopedic Society members on the preferred method for treating cranial cruciate ligament rupture in dogs weighing more than 15 kilogams (33 pounds). Journal of the American Veterinary Medical Association. 2018;253(5):586–5997. doi: 10.2460/javma.253.5.586 30110219

32. Wilke VL, Conzemius MG, Kinghorn BP, Macrossan PE, Cai W, Rothschild MF. Inheritance of rupture of the cranial cruciate ligament in Newfoundlands. Journal of the American Veterinary Medical Association. 2006;228(1):61–4. doi: 10.2460/javma.228.1.61 16426167

33. Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao K, Zhu L, et al. A single IGF1 allele is a major determinant of small size in dogs. Science. 2007;316:112–5. doi: 10.1126/science.1137045 17412960

34. Weikard R, Altmaier E, Suhre K, Weinberger KM, Hammon HM, Albrecht E, et al. Metabolomic profiles indicate distinct physiological pathways affected by two loci with major divergent effect on Bos taurus growth and lipid deposition. Physiologic Genomcis. 2010;42A(2):79–88.

35. Vinayagam A, Stelzl U, Foulle R, Plassmann S, Zenkner M, Timm J, et al. A directed protein interaction network for investigating intracellular signal transduction. Science Signaling. 2011;4(189):rs8. doi: 10.1126/scisignal.2001699 21900206

36. Mis EK, Liem KFJ, Kong Y, Schwartz NB, Domowicz M, Weatherbee SD. Forward genetics defines Xylt1 as a key, conserved regulator of early chondrocyte maturation and skeletal length. Developmental Biology. 2014;385(1):67–82. doi: 10.1016/j.ydbio.2013.10.014 24161523

37. Qu BH, Karas M, Koval A, LeRoth D. Insulin receptor substrate-4 enhances insulin-like growth factor-l-induced cell proliferation. Journal of Biological Chemistry. 1999;274:31179–84. doi: 10.1074/jbc.274.44.31179 10531310

38. Ma J, Gilbert H, Iannuccelli N, Duan Y, Guo B, Huang W, et al. Fine mapping of fatness QTL on porcine chromosome X and analyses of three positional candidate genes. BMC Genetics. 2013;14:46. doi: 10.1186/1471-2156-14-46 23725562

39. Cepica S, Batenschlager H, Geldermann H. Mapping of QTL on chromosome X for fat deposition, muscling and growth traits in a wild boar x Meishan F2 family using a high-densityi gene map. Animal Genetics. 2007;38:634–8. doi: 10.1111/j.1365-2052.2007.01661.x 17931399

40. Ikegawa S. Genomic study of adolescent idiopathic scoliosis in Japan. Scoliosis Spinal Disorders. 2016;11:5. doi: 10.1186/s13013-016-0067-x 27299157

41. Xu L, Xia C, Quin X, Sun W, Tang NL, Qiu Y, et al. Genetic variant of BNC2 gene is functionally associated with adolescent idiopathic scoliosis in Chinese population. Molecular Genetics and Genomics. 2017;292(4):789–95. doi: 10.1007/s00438-017-1315-3 28342042

42. Deng X, Liang LN, Zhu D, Zheng LP, Yu JH, Meng XL, et al. Wedelolactone inhibitics osteoclastogenesis but enhances osteoblastogenesis through altering different semaphorins production. International Immunopharmacology. 2018;60:41–9. doi: 10.1016/j.intimp.2018.04.037 29702282

43. Zhong L, Huang X, Rodrigues ED, Leijten JC, Verrips T, El Khattabi M, et al. Endogenous DDK1 and FRZB regulate chondrogenesis and hypertrophy in three-dimensional cultures of human chondrocytes and human mesenchymal stem cells. Stem Cells and Development. 2016;25(23):1808–17. doi: 10.1089/scd.2016.0222 27733096

44. Liu Z, Mohan S, Yakar S. Does the GH/GF-1 axis contribute to skeletal sexual dimorphism? Evidence from mouse studies. Growth Hormone IGF Research. 2016;27:7–17. doi: 10.1016/j.ghir.2015.12.004 26843472

45. Millar DS, Lewis MD, Horan M, Newsway V, Easter TE, Gregory JW, et al. Novel mutations of the growth hormone 1 (GH1) gene disclosed by modulation of the clinical selection criteria for individuals with short stature. Human Mutation. 2003;21(4):424–240. doi: 10.1002/humu.10168 12655557

46. Mullen MP, Berry DP, Howard DJ, Diskin MG, Lynch CO, Berkowicz EW, et al. Associations between novel single nucleotide polymorphisms in the Bos taurus growth hormone gene and performance traits in Holstein-Friesian dairy cattle. Journal of Dairy Science. 2010;93(12):5959–69. doi: 10.3168/jds.2010-3385 21094770

47. Lango Allen H, Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010;467(7317):832–8. doi: 10.1038/nature09410 20881960

48. Guthrie JW, Keeley BJ, Maddock E, Bright SR, May C. Effect of signalment on the presentation of canine patients suffering from cranial cruciate ligament disease. Journal of Small Animal Practice. 2012;53(5):273–37. doi: 10.1111/j.1748-5827.2011.01202.x 22489873

49. Widmer WR, Buckwalter KA, Braunstein EM, Hill MA, O'Connor BL, Visco DM. Radiographic and magnetic resonance imaging of the stifle joint in experimental osteoarthritis of dogs. Veterinary Radiology and Ultrasound. 1994;35(5):371–84.

50. Fuller MC, Mayashi K, Bruecker KA, Holsworth IG, Sutton JS, Kass PH, et al. Evaluation of the radiographic infrapatellar fat pad sign of the contralateral stifle joint as a risk factor for subsequent contralateral cranial cruciate ligament rupture in dogs with unilateral rupture: 96 cases (2006–2007). Journal of the American Veterinary Medical Association. 2014;244(3):328–38. doi: 10.2460/javma.244.3.328 24432965

51. Teichtahl AJ, Wulidasari E, Brady SR, Wang Y, Wluka AE, Ding C, et al. A large infrapatellar fat pad protects against knee pain and lateral tibial cartilage volume loss. Arthritis Research and Therapy. 2015;17:318. doi: 10.1186/s13075-015-0831-y 26555322

52. Schmidli MR, Fuhrer B, Kurt N, Senn D, Drögemüller M, Rytz U, et al. Inflammatory pattern of the infrapatellar fat pad in dogs with canine cruciate ligament disease. BMC Veterinary Research. 2018;14:161. doi: 10.1186/s12917-018-1488-y 29769086

53. Wu J, Kuang L, Chen C, Yang J, Zeng WN, Li T, et al. miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials. 2019;206:87–100. doi: 10.1016/j.biomaterials.2019.03.022 30927715

54. Belluzzi E, Stocco E, Pozzuoli A, Granzotto M, Porzionato A, Vettor R, et al. Contribution of infrapatellar fat pad and synovial membrane to knee osteoarthritis pain. BioMed Research International. 2019;(March 31):Article ID 6390182.

55. Yang L, Zhang Y, Zhendong Y, Li S, Zhenhua Y, Xu M. Forkhead box Q1: a key player in the pathogenesis of tumors (review). International Journal of Oncology. 2016;49(1):51–8. doi: 10.3892/ijo.2016.3517 27176124

56. Glassman M, Hofmeiser E, Weh JM, Roach W, Torres B, Johnston S, et al. Radiographic quantitative assessment of caudal proximal tibial angulation in 100 dogs with cranial cruciate ligament rupture. Veterinary Surgery. 2011;40(7):830–8. doi: 10.1111/j.1532-950X.2011.00857.x 21906096

57. Kyllar M, Čížek P. Cranial cruciate ligament structure in relation to the tibial plateau slope and intercondylar notch width in dogs. Journal of Veterinary Science. 2018;19(5):699–707. doi: 10.4142/jvs.2018.19.5.699 29929359

58. Buote N, Fusco J, Radasch R. Age, tibial plateau angle, sex, and weight as risk factors for contralateral rupture of the cranial cruciate ligament in Labradors. Veterinary Surgery. 2009;38:481–9. doi: 10.1111/j.1532-950X.2009.00532.x 19538670

59. Cunningham DP, Mostafa AA, Gordan-Evans WJ, Boudrieau RJ, Griffon DJ. Factors contributing to the variability of a predictive score for cranial cruciate ligament deficiency in Labrador retrievers. BMC Veterinary Research. 2017;13(1):235. doi: 10.1186/s12917-017-1154-9 28806971

60. Janovec J, Kyllar M, Midgley D, Owen M. Conformation of the proximal tibia and cranial cruciate ligament disease in small breed dogs. Veterinary and Comparative Orthopaedics and Traumatology. 2017;30(3):178–83. doi: 10.3415/VCOT-16-07-0115 28331933

61. Wilke VL, Conzemius MG, Besancon MF, Evans RB, Ritter M. Comparison of tibial plateau angle between clinically normal greyhounds and Labrador retrievers with and without rupture of the cranial cruciate ligament. Journal of the American Veterinary Medical Association. 2002;221(10):1426–9. doi: 10.2460/javma.2002.221.1426 12458611

62. Townsend S, Kim SE, Tinga S. Tibial plateau morphology in dogs with cranial cruciate ligament insufficiency. Veterinary Surgery. 2018;47(8):1009–15. doi: 10.1111/vsu.12953 30303540

63. Pecci A, Klersy C, Gresele P, De Rocco D, Bozzi V, Russo G, et al. MYH9-related disease: a novel prognostic model to predict the clinical evolution of the disease based on genotype-phenotype correlations. Human Mutation. 2014;35(2):236–47. doi: 10.1002/humu.22476 24186861

64. McMichael BK, Wysolmerski RB, Lee BS. Regulated proteolysis of nonmuscle myosin IIA stimulates osteoclast fusion. Journal of Biological Chemistry. 2009;284(18):12266–75. doi: 10.1074/jbc.M808621200 19269977

65. Kızılgöz V, Sivrioğlu AK, Ulusoy GR, Aydın H, Karayol SS, Menderes U: Analysis of the risk factors for anterior cruciate ligament injury: an investigation of structural tendencies. Clin Imaging. 2018; 50:20–30. doi: 10.1016/j.clinimag.2017.12.004 29253746


Článek vyšel v časopise

PLOS One


2019 Číslo 10