Macro-charcoal accumulation in floodplain wetlands: Problems and prospects for reconstruction of fire regimes and environmental conditions


Autoři: Bradley P. Graves aff001;  Timothy J. Ralph aff001;  Paul P. Hesse aff001;  Kira E. Westaway aff001;  Tsuyoshi Kobayashi aff002;  Patricia S. Gadd aff003;  Debashish Mazumder aff003
Působiště autorů: Department of Environmental Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, NSW, Australia aff001;  Science Division, NSW Office of Environment and Heritage, Sydney South, NSW, Australia aff002;  Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224011

Souhrn

Floodplain wetland ecosystems respond dynamically to flooding, fire and geomorphological processes. We employed a combined geomorphological and environmental proxy approach to assess allochthonous and autochthonous macro-charcoal accumulation in the Macquarie Marshes, Australia, with implications for the reconstruction of fire regimes and environmental conditions in large, open-system wetlands. After accounting for fluvial macro-charcoal flux (1.05 ± 0.32 no. cm-2 a-1), autochthonous macro-charcoal in ~1 m deep sediment profiles spanning ~1.7 ka were highly variable and inconsistent between cores and wetlands (concentrations from 0 to 438 no. cm-3, mean accumulation rates from 0 to 3.86 no. cm-2 a-1). A positive correlation existed between the number of recent fires, satellite-observed ignition points, and macro-charcoal concentrations at the surface of the wetlands. Sedimentology, geochemistry, and carbon stable isotopes (δ13C range -15 to -25 ‰) were similar in all cores from both wetlands and varied little with depth. Application of macro-charcoal and other environmental proxy techniques is inherently difficult in large, dynamic wetland systems due to variations in charcoal sources, sediment and charcoal deposition rates, and taphonomic processes. Major problems facing fire history reconstruction using macro-charcoal records in these wetlands include: (1) spatial and temporal variations in fire activity and ash and charcoal products within the wetlands, (2) variations in allochthonous inputs of charcoal from upstream sources, (3) tendency for geomorphic dynamism to affect flow dispersal and sediment and charcoal accumulation, and (4) propensity for post-depositional modification and/or destruction of macro-charcoal by flooding and taphonomic processes. Recognition of complex fire-climate-hydrology-vegetation interactions is essential. High-resolution, multifaceted approaches with reliable geochronologies are required to assess spatial and temporal patterns of fire and to reconstruct in order to interpret wetland fire regimes.

Klíčová slova:

Flooding – Geochemistry – Sediment – Surface water – Wetlands – Wildfires – Swamps – Optically stimulated luminescence


Zdroje

1. Bowman DMJS Balch JK, Artaxo P Bond WJ, Carlson JM Cochrane MA, et al. Fire in the Earth System. Science. 2009;324(5926):481–4. doi: 10.1126/science.1163886 19390038

2. NPWS. Fire Management Plan 2000–2004: Macquarie Marshes Nature Reserve. 1999.

3. Mariani M, Fletcher M-S, Holz A, Nyman P. ENSO controls interannual fire activity in southeast Australia. Geophysical Research Letters. 2016;43(20):10,891–10,900. doi: 10.1002/2016GL070572

4. Fletcher M-S, Benson A, Heijnis H, Gadd PS, Cwynar LC, Rees ABH. Changes in biomass burning mark the onset of an ENSO-influenced climate regime at 42°S in southwest Tasmania, Australia. Quaternary Science Reviews. 2015;122:222–32. https://doi.org/10.1016/j.quascirev.2015.05.002.

5. Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ, Williamson GJ, et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications. 2015;6:7537. doi: 10.1038/ncomms8537 26172867

6. Ross B, Trent P, Matthias B, Owen P, Hamish C. Divergent responses of fire to recent warming and drying across south-eastern Australia. Global Change Biology. 2014;20(5):1412–28. doi: 10.1111/gcb.12449 24151212

7. Stahle LN, Whitlock C, Haberle SG. A 17,000-Year-Long Record of Vegetation and Fire from Cradle Mountain National Park, Tasmania. Frontiers in Ecology and Evolution. 2016;4(82). doi: 10.3389/fevo.2016.00082

8. Michael-Shawn F, B. WB, Cathy W, P. PD, Hendrik H, G. HS, et al. The legacy of mid-Holocene fire on a Tasmanian montane landscape. Journal of Biogeography. 2014;41(3):476–88. doi: 10.1111/jbi.12229

9. Mooney SD, Harrison SP, Bartlein PJ, Daniau AL, Stevenson J, Brownlie KC, et al. Late Quaternary fire regimes of Australasia. Quaternary Science Reviews. 2011;30(1):28–46. https://doi.org/10.1016/j.quascirev.2010.10.010.

10. Whitlock C, Anderson RS. Fire History Reconstructions Based on Sediment Records from Lakes and Wetlands. In: Veblen TT, Baker WL, Montenegro G, Swetnam TW, editors. Fire and Climatic Change in Temperate Ecosystems of the Western Americas. New York, NY: Springer New York; 2003. p. 3–31.

11. Wilkins D, Gouramanis C, De Deckker P, Fifield LK, Olley J. Holocene lake-level fluctuations in Lakes Keilambete and Gnotuk, southwestern Victoria, Australia. The Holocene. 2013;23(6):784–95. doi: 10.1177/0959683612471983

12. Stevenson J, Brockwell S, Rowe C, Proske U, Shiner J. The palaeo-environmental history of Big Willum Swamp, Weipa: An environmental context for the archaeological record. Australian Archaeology. 2015;80(1):17–31. doi: 10.1080/03122417.2015.11682041

13. Burrows MA, Fenner J, Haberle SG. Humification in northeast Australia: Dating millennial and centennial scale climate variability in the late Holocene. The Holocene. 2014;24(12):1707–18. doi: 10.1177/0959683614551216

14. Black MP, Mooney SD, Martin HA. A >43,000-year vegetation and fire history from Lake Baraba, New South Wales, Australia. Quaternary Science Reviews. 2006;25(21):3003–16. https://doi.org/10.1016/j.quascirev.2006.04.006.

15. Whitlock C, Larsen C. Charcoal as a Fire Proxy. In: Smol JP, Birks HJB, Last WM, Bradley RS, Alverson K, editors. Tracking Environmental Change Using Lake Sediments: Terrestrial, Algal, and Siliceous Indicators. Dordrecht: Springer Netherlands; 2001. p. 75–97.

16. Clark JS, Lynch J, Stocks BJ, Goldammer JG. Relationships between charcoal particles in air and sediments in west-central Siberia. The Holocene. 1998;8(1):19–29. doi: 10.1191/095968398672501165

17. Whitlock C, Millspaugh SH. Testing the assumptions of fire-history studies: an examination of modern charcoal accumulation in Yellowstone National Park, USA. The Holocene. 1996;6(1):7–15. doi: 10.1177/095968369600600102

18. Clark JS, Royall PD. Local and Regional Sediment Charcoal Evidence for Fire Regimes in Presettlement North-Eastern North America. Journal of Ecology. 1996;84(3):365–82. doi: 10.2307/2261199

19. Long CJ, Whitlock C, Bartlein PJ, Millspaugh SH. A 9000-year fire history from the Oregon Coast Range, based on a high-resolution charcoal study. Canadian Journal of Forest Research. 1998;28(5):774–87. doi: 10.1139/x98-051

20. Tinner W, Hofstetter S, Zeugin F, Conedera M, Wohlgemuth T, Zimmermann L, et al. Long-distance transport of macroscopic charcoal by an intensive crown fire in the Swiss Alps—implications for fire history reconstruction. The Holocene. 2006;16(2):287–92. doi: 10.1191/0959683606hl925rr

21. Clark JS. Particle Motion and the Theory of Charcoal Analysis: Source Area, Transport, Deposition, and Sampling. Quaternary Research. 1988;30(1):67–80. Epub 2017/01/20. doi: 10.1016/0033-5894(88)90088-9

22. Oris F, Ali AA, Asselin H, Paradis L, Bergeron Y, Finsinger W. Charcoal dispersion and deposition in boreal lakes from 3 years of monitoring: Differences between local and regional fires. Geophysical Research Letters. 2014;41(19):6743–52. doi: 10.1002/2014GL060984

23. Power MJ, Marlon JR, Bartlein PJ, Harrison SP. Fire history and the Global Charcoal Database: A new tool for hypothesis testing and data exploration. Palaeogeography, Palaeoclimatology, Palaeoecology. 2010;291(1):52–9. https://doi.org/10.1016/j.palaeo.2009.09.014.

24. Buckman S, Brownlie KC, Bourman RP, Murray-Wallace CV, Morris RH, Lachlan TJ, et al. Holocene palaeofire records in a high-level, proximal valley-fill (Wilson Bog), Mount Lofty Ranges, South Australia. The Holocene. 2009;19(7):1017–29. doi: 10.1177/0959683609340998

25. Black MP, Mooney SD, Attenbrow V. Implications of a 14 200 year contiguous fire record for understanding human—climate relationships at Goochs Swamp, New South Wales, Australia. The Holocene. 2008;18(3):437–47. doi: 10.1177/0959683607087933

26. Haberle SG. A 23,000-yr Pollen Record from Lake Euramoo, Wet Tropics of NE Queensland, Australia. Quaternary Research. 2005;64(3):343–56. Epub 2017/01/20. doi: 10.1016/j.yqres.2005.08.013

27. Kaal J, Carrión Marco Y, Asouti E, Martín Seijo M, Martínez Cortizas A, Costa Casáis M, et al. Long-term deforestation in NW Spain: linking the Holocene fire history to vegetation change and human activities. Quaternary Science Reviews. 2011;30(1):161–75. https://doi.org/10.1016/j.quascirev.2010.10.006.

28. Colombaroli D, Vannière B, Emmanuel C, Magny M, Tinner W. Fire—vegetation interactions during the Mesolithic—Neolithic transition at Lago dell'Accesa, Tuscany, Italy. The Holocene. 2008;18(5):679–92. doi: 10.1177/0959683608091779

29. Colombaroli D, Marchetto A, Tinner W. Long-term interactions between Mediterranean climate, vegetation and fire regime at Lago di Massaciuccoli (Tuscany, Italy). Journal of Ecology. 2007;95(4):755–70. doi: 10.1111/j.1365-2745.2007.01240.x

30. Sadori L, Masi A, Ricotta C. Climate-driven past fires in central Sicily. Plant Biosystems—An International Journal Dealing with all Aspects of Plant Biology. 2015;149(1):166–73. doi: 10.1080/11263504.2014.992996

31. Conedera M, Tinner W, Neff C, Meurer M, Dickens AF, Krebs P. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quaternary Science Reviews. 2009;28(5):555–76. https://doi.org/10.1016/j.quascirev.2008.11.005.

32. Carcaillet C, Bouvier M, Fréchette B, Larouche AC, Richard PJH. Comparison of pollen-slide and sieving methods in lacustrine charcoal analyses for local and regional fire history. The Holocene. 2001;11(4):467–76. doi: 10.1191/095968301678302904

33. Williams MAJ, Dunkerley DL, De Deckker P, Kershaw AP. Quaternary Environments. London, New York: Arnold, Oxford University Press; 1998.

34. Tooth S. Process, form and change in dryland rivers: a review of recent research. Earth-Science Reviews. 2000;51(1):67–107. https://doi.org/10.1016/S0012-8252(00)00014-3.

35. Ralph TJ, Hesse PP. Downstream hydrogeomorphic changes along the Macquarie River, southeastern Australia, leading to channel breakdown and floodplain wetlands. Geomorphology. 2010;118(1):48–64. https://doi.org/10.1016/j.geomorph.2009.12.007.

36. Tooth S, McCarthy TS. Wetlands in drylands: geomorphological and sedimentological characteristics, with emphasis on examples from southern Africa. Progress in Physical Geography: Earth and Environment. 2007;31(1):3–41. doi: 10.1177/0309133307073879

37. Black MP, Mooney SD, Haberle SG. The fire, human and climate nexus in the Sydney Basin, eastern Australia. The Holocene. 2007;17(4):469–80. doi: 10.1177/0959683607077024

38. Bradstock RA, Williams RJ, Gill AM, CSIRO. Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World: CSIRO Publishing; 2012.

39. Russell-Smith J, Yates CP, Whitehead PJ, Smith R, Craig R, Allan GE, et al. Bushfires down under: patterns and implications of contemporary Australian landscape burning. International Journal of Wildland Fire. 2007;16(4):361–77. https://doi.org/10.1071/WF07018.

40. Balme J, Beck W. Earth mounds in southeastern Australia. Australian Archaeology. 1996;42(1):39–51. doi: 10.1080/03122417.1996.11681571

41. Davis EL, Mustaphi CJC, Gall A, Pisaric MFJ, Vermaire JC, Moser KA. Determinants of fire activity during the last 3500 yr at a wildland—urban interface, Alberta, Canada. Quaternary Research. 2016;86(3):247–59. Epub 2017/01/20. doi: 10.1016/j.yqres.2016.08.006

42. Woodward C, Shulmeister J, Bell D, Haworth R, Jacobsen G, Zawadzki A. A Holocene record of climate and hydrological changes from Little Llangothlin Lagoon, south eastern Australia. The Holocene. 2014;24(12):1665–74. doi: 10.1177/0959683614551218

43. Berney P, Hosking T. Opportunities and challenges for water-dependent protected area management arising from water management reform in the Murray–Darling Basin: a case study from the Macquarie Marshes in Australia. Aquatic Conservation: Marine and Freshwater Ecosystems. 2016;26(S1):12–28. doi: 10.1002/aqc.2639

44. OEH. Macquarie Marshes Ramsar site: Ecological character description Macquarie Marshes Nature Reserve and U-block components. OEH 2012/0517. Office of Environment and Heritage, NSW Department of Premier and Cabinet, Sydney.: 2012.

45. Bureau of Meteorology. Climate statistics for Australian locations: Australian Government Bureau of Meteorology 2017 [cited 2017 07/09/2017]. Available from: http://www.bom.gov.au/climate/averages/tables/cw_051042.shtml.

46. Ralph TJ, Kobayashi T, García A, Hesse PP, Yonge D, Bleakley N, et al. Paleoecological responses to avulsion and floodplain evolution in a semiarid Australian freshwater wetland. Australian Journal of Earth Sciences. 2011;58(1):75–91. doi: 10.1080/08120099.2010.534818

47. Yonge D, Hesse PP. Geomorphic environments, drainage breakdown, and channel and floodplain evolution on the lower Macquarie River, central-western New South Wales. Australian Journal of Earth Sciences. 2009;56(sup1):S35–S53. doi: 10.1080/08120090902870780

48. Ralph TJ. Channel breakdown and floodplain wetland morphodynamics in the Macquarie Marshes, south-eastern Australia. Macquarie University, Sydney Australia. 2008.

49. Kingsford RT, Auld KM. Waterbird breeding and environmental flow management in the Macquarie Marshes, arid Australia. River Research and Applications. 2005;21(2‐3):187–200. doi: 10.1002/rra.840

50. Bowen S, Simpson S. Changes in extent and condition of the vegetation communities of the Macquarie Marshes floodplain 1991–2008: Final Report to the NSW Wetland Recovery Program. Rivers and Wetlands Unit, Department of Environment Climate Change and Water, NSW, Sydney.: 2010.

51. Geoscience Australia. Sentinel Hotspot Database: Geoscience Australia, Commonwealth of Australia; 2017 [cited 2017 05/04/2017]. Available from: https://sentinel.ga.gov.au/#/.

52. NPWS Fire History—Wildfires and Prescribed Burns [Internet]. 2018. Available from: https://data.nsw.gov.au/data/dataset/1f694774-49d5-47b8-8dd0-77ca8376eb04.

53. Spatial Services—NSW Imagery [Internet]. 2015 [cited 18-03-2019]. Available from: https://sdi.nsw.gov.au/catalog/search/resource/details.page?uuid=%7BA9550CB1-5908-4A47-936F-64AE50405DF7%7D.

54. Geodata Coast 100K 2004 [Internet]. Australian Government 2004 [cited 01-03-2019]. Available from: https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/61395.

55. Thomas RF, Kingsford RT, Lu Y, Hunter SJ. Landsat mapping of annual inundation (1979–2006) of the Macquarie Marshes in semi-arid Australia. International Journal of Remote Sensing. 2011;32(16):4545–69. doi: 10.1080/01431161.2010.489064

56. Kingsford RT. Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia. Austral Ecology. 2000;25(2):109–27. doi: 10.1046/j.1442-9993.2000.01036.x

57. Kingsford RT, Johnson W. Impact of Water Diversions on Colonially-Nesting Waterbirds in the Macquarie Marshes of Arid Australia. Colonial Waterbirds. 1998;21(2):159–70. doi: 10.2307/1521903

58. Kobayashi T, Ralph TJ, Ryder DS, Hunter SJ, Shiel RJ, Segers H. Spatial dissimilarities in plankton structure and function during flood pulses in a semi-arid floodplain wetland system. Hydrobiologia. 2015;747(1):19–31. doi: 10.1007/s10750-014-2119-7

59. Kai W, Kerrylee R, Neil S, Debashish M, Li W, J. MR. Vegetation persistence and carbon storage: Implications for environmental water management for Phragmites australis. Water Resources Research. 2015;51(7):5284–300. doi: 10.1002/2014WR016253

60. Yu L, García A, Chivas AR, Tibby J, Kobayashi T, Haynes D. Ecological change in fragile floodplain wetland ecosystems, natural vs human influence: The Macquarie Marshes of eastern Australia. Aquatic Botany. 2015;120:39–50. https://doi.org/10.1016/j.aquabot.2014.07.002.

61. Kobayashi T, Ryder DS, Ralph TJ, Mazumder D, Saintilan N, Iles J, et al. Longitudinal spatial variation in ecological conditions in an in-channel floodplain river system during flow pulses. River Research and Applications. 2011;27(4):461–72. doi: 10.1002/rra.1381

62. Ralph TJ, Hesse PP, Kobayashi T. Wandering wetlands: spatial patterns of historical channel and floodplain change in the Ramsar-listed Macquarie Marshes, Australia. Marine and Freshwater Research. 2016;67(6):782–802. https://doi.org/10.1071/MF14251.

63. Thoms MC, Sheldon F. An ecosystem approach for determining environmental water allocations in Australian dryland river systems: the role of geomorphology. Geomorphology. 2002;47(2):153–68. https://doi.org/10.1016/S0169-555X(02)00085-5.

64. DECCW. Macquarie Marshes Adaptive Environmental Management Plan: Synthesis of information projects and actions. DECCW 2010/224. NSW Wetland Recovery Program, Department of Environment, Climate Change and Water, Sydney. 2010.

65. Geoscience Australia. Sentinel Hotspots Product Description V1.1. 2014 14/04/2014. Report No.: D2014-74558.

66. Giglio L, Descloitres J, Justice CO, Kaufman YJ. An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sensing of Environment. 2003;87(2):273–82. https://doi.org/10.1016/S0034-4257(03)00184-6.

67. Ralph TJ, Hosking TN, Iles J, Hesse PP, editors. Sediment, organic matter and nutrient supply to an Australian floodplain wetland and implications for management. Proceedings of the 6th Australian Stream Management Conference: Managing for Extremes; 2012.

68. Ralph TJ. The rate and distribution of sedimentation adjacent to a distributary channel in the Macquarie Marshes and the implications for processes of channel avulsion. [Honours Thesis ]: Macquarie University 2001.

69. Blake GR, Hartge KH. Bulk Density. In: Klute A, editor. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods. SSSA Book Series. Madison, WI: Soil Science Society of America, American Society of Agronomy; 1986. p. 363–75.

70. Rayment GE, Lyons DJ. Soil chemical methods: Australasia / Rayment George E.and Lyons David J. Lyons DJ, editor: Collingwood, Vic.: CSIRO Pub.; 2011.

71. Stevenson J, Haberle S. Macro Charcoal Analysis: A Modified Technique Used by the Department of Archaeology and Natural History. Australian National University, ACT, Australia. 2005.

72. Clercq ML, Van Der Plicht J, Gröning M. New 14C Reference Materials with Activities of 15 and 50 pMC. Radiocarbon. 1997;40(1):295–7. Epub 2016/07/18. doi: 10.1017/S0033822200018178

73. Gonfiantini R, Stichler W, Rozanski K. Standards and intercomparison materials distributed by the International Atomic Energy Agency for stable isotope measurements. International Atomic Energy Agency (IAEA), Vienna, Austria: 1993 Contract No.: IAEA-TECDOC—825.

74. Croudace IW, Rindby A, Rothwell RG. ITRAX: description and evaluation of a new multi-function X-ray core scanner. Geological Society, London, Special Publications. 2006;267(1):51–63. doi: 10.1144/gsl.Sp.2006.267.01.04

75. Bouchard F, Francus P, Pienitz R, Laurion I. Sedimentology and geochemistry of thermokarst ponds in discontinuous permafrost, subarctic Quebec, Canada. Journal of Geophysical Research: Biogeosciences. 2011;116(G2). doi: 10.1029/2011JG001675

76. Wintle AG, Murray AS. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements. 2006;41(4):369–91. https://doi.org/10.1016/j.radmeas.2005.11.001.

77. Aitken MJ. An introduction to optical dating: the dating of Quaternary sediments by the use of photon-stimulated luminescence. Oxford, New York: Oxford University Press; 1998.

78. Galbraith RF, Roberts RG, Laslett GM, Yoshida H, Olley JM. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry. 1999;41(2):339–64. doi: 10.1111/j.1475-4754.1999.tb00987.x

79. Murray AS, Wintle AG. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements. 2003;37(4):377–81. https://doi.org/10.1016/S1350-4487(03)00053-2.

80. Jacobs Z, Duller GAT, Wintle AG. Interpretation of single grain De distributions and calculation of De. Radiation Measurements. 2006;41(3):264–77. https://doi.org/10.1016/j.radmeas.2005.07.027.

81. Prescott JR, Hutton JT. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiation Measurements. 1994;23(2):497–500. https://doi.org/10.1016/1350-4487(94)90086-8.

82. Huntley DJ, Godfrey-Smith DI, Thewalt MLW. Optical dating of sediments. Nature. 1985;313:105. doi: 10.1038/313105a0

83. Rhodes EJ. Optically Stimulated Luminescence Dating of Sediments over the Past 200,000 Years. Annual Review of Earth and Planetary Sciences. 2011;39(1):461–88. doi: 10.1146/annurev-earth-040610-133425

84. Cuven S, Francus P, Lamoureux SF. Estimation of grain size variability with micro X-ray fluorescence in laminated lacustrine sediments, Cape Bounty, Canadian High Arctic. Journal of Paleolimnology. 2010;44(3):803–17. doi: 10.1007/s10933-010-9453-1

85. Elbert J, Wartenburger R, von Gunten L, Urrutia R, Fischer D, Fujak M, et al. Late Holocene air temperature variability reconstructed from the sediments of Laguna Escondida, Patagonia, Chile (45°30′S). Palaeogeography, Palaeoclimatology, Palaeoecology. 2013;369:482–92. https://doi.org/10.1016/j.palaeo.2012.11.013.

86. Olsen J, Anderson NJ, Leng MJ. Limnological controls on stable isotope records of late-Holocene palaeoenvironment change in SW Greenland: a paired lake study. Quaternary Science Reviews. 2013;66:85–95. https://doi.org/10.1016/j.quascirev.2012.10.043.

87. Allen CD, Anderson RS, Jass RB, Toney JL, Baisan CH. Paired charcoal and tree-ring records of high-frequency Holocene fire from two New Mexico bog sites. International Journal of Wildland Fire. 2008;17(1):115–30. https://doi.org/10.1071/WF07165.

88. Tooth S, McCarthy T, Rodnight H, Keen-Zebert A, Rowberry M, Brandt D. Late Holocene development of a major fluvial discontinuity in floodplain wetlands of the Blood River, eastern South Africa. Geomorphology. 2014;205:128–41. https://doi.org/10.1016/j.geomorph.2011.12.045.

89. Madsen AT, Murray AS. Optically stimulated luminescence dating of young sediments: A review. Geomorphology. 2009;109(1):3–16. https://doi.org/10.1016/j.geomorph.2008.08.020.

90. Sloss CR, Westaway KE, Hua Q, Murray-Wallace CV. 14.30 An Introduction to Dating Techniques: A Guide for Geomorphologists. In: Shroder JF, editor. Treatise on Geomorphology. San Diego: Academic Press; 2013. p. 346–69.

91. Hesse PP, Williams R, Ralph TJ, Larkin ZT, Fryirs KA, Westaway KE, et al. Dramatic reduction in size of the lowland Macquarie River in response to Late Quaternary climate-driven hydrologic change. Quaternary Research. 2018 in press.

92. Hesse PP, Williams R, Ralph TJ, Fryirs KA, Larkin ZT, Westaway KE, et al. Palaeohydrology of lowland rivers in the Murray-Darling Basin, Australia. Quaternary Science Reviews. 2018;200:85–105. https://doi.org/10.1016/j.quascirev.2018.09.035.

93. Hesse PP, Williams R, Ralph TJ, Larkin ZT, Fryirs KA, Westaway KE, et al. Dramatic reduction in size of the lowland Macquarie River in response to Late Quaternary climate-driven hydrologic change. Quaternary Research. 2018;90(2):360–79. Epub 2018/09/19. doi: 10.1017/qua.2018.48

94. Staddon PL. Carbon isotopes in functional soil ecology. Trends in Ecology & Evolution. 2004;19(3):148–54. https://doi.org/10.1016/j.tree.2003.12.003.

95. Ehleringer JR, Buchmann N, Flanagan LB. Carbon isotope ratios in belowground carbon cycle processes. Ecological Applications. 2000;10(2):412–22. doi: 10.1890/1051-0761(2000)010[0412:CIRIBC]2.0.CO;2

96. Pack SM, Miller GH, Fogel ML, Spooner NA. Carbon isotopic evidence for increased aridity in northwestern Australia through the Quaternary. Quaternary Science Reviews. 2003;22(5):629–43. https://doi.org/10.1016/S0277-3791(02)00144-0.

97. Leng MJ, Marshall JD. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews. 2004;23(7):811–31. https://doi.org/10.1016/j.quascirev.2003.06.012.

98. Kelleway J, Mazumder D, Wilson G, Kobayashi T. Using isotopic techniques to assess trophic structure in northern Murray-Darling Basin wetlands. In: Saintilan N, Overton I, editors. Ecosystem Response Modelling in the Murray-Darling Basin Collingwood, Victoria, Australia.: CSIRO Publishing; 2010. p. 85–102.

99. Lamb AL, Wilson GP, Leng MJ. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Science Reviews. 2006;75(1):29–57. https://doi.org/10.1016/j.earscirev.2005.10.003.

100. Bowling DR, Pataki DE, Randerson JT. Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytologist. 2008;178(1):24–40. doi: 10.1111/j.1469-8137.2007.02342.x 18179603

101. Dearing JA. Holocene environmental change from magnetic proxies in lake sediments. In: Maher BA, Thompson R, editors. Quaternary Climates, Environments and Magnetism. Cambridge: Cambridge University Press; 1999. p. 231–78.

102. Thompson R, Oldfield F. Mineral magnetic studies of lake sediments. In: Thompson R, Oldfield F, editors. Environmental Magnetism. Dordrecht: Springer Netherlands; 1986. p. 101–23.

103. Rummery TA. The use of magnetic measurements in interpreting the fire histories of lake drainage basins. Hydrobiologia. 1983;103(1):53–8. doi: 10.1007/bf00028427

104. Dearing JA, Flower RJ. The magnetic susceptibility of sedimenting material trapped in Lough Neagh, Northern Ireland, and its erosional significance1. Limnology and Oceanography. 1982;27(5):969–75. doi: 10.4319/lo.1982.27.5.0969

105. Millspaugh SH, Whitlock C. A 750-year fire history based on lake sediment records in central Yellowstone National Park, USA. The Holocene. 1995;5(3):283–92. doi: 10.1177/095968369500500303

106. Cuven S, Francus P, Lamoureux S. Mid to Late Holocene hydroclimatic and geochemical records from the varved sediments of East Lake, Cape Bounty, Canadian High Arctic. Quaternary Science Reviews. 2011;30(19):2651–65. https://doi.org/10.1016/j.quascirev.2011.05.019.

107. Davies SJ, Lamb HF, Roberts SJ. Micro-XRF Core Scanning in Palaeolimnology: Recent Developments. In: Croudace IW, Rothwell RG, editors. Micro-XRF Studies of Sediment Cores: Applications of a non-destructive tool for the environmental sciences. Dordrecht: Springer Netherlands; 2015. p. 189–226.

108. Metcalfe SE, Jones MD, Davies SJ, Noren A, MacKenzie A. Climate variability over the last two millennia in the North American Monsoon region, recorded in laminated lake sediments from Laguna de Juanacatlán, Mexico. The Holocene. 2010;20(8):1195–206. doi: 10.1177/0959683610371994

109. Kylander ME, Ampel L, Wohlfarth B, Veres D. High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: new insights from chemical proxies. Journal of Quaternary Science. 2011;26(1):109–17. doi: 10.1002/jqs.1438

110. Haberzettl T, Corbella H, Fey M, Janssen S, Lücke A, Mayr C, et al. Lateglacial and Holocene wet—dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina. The Holocene. 2007;17(3):297–310. doi: 10.1177/0959683607076437

111. Heinl M, Neuenschwander A, Sliva J, Vanderpost C. Interactions between fire and flooding in a southern African floodplain system (Okavango Delta, Botswana). Landscape Ecology. 2006;21(5):699–709. doi: 10.1007/s10980-005-5243-y

112. Heinl M, Frost P, Vanderpost C, Sliva J. Fire activity on drylands and floodplains in the southern Okavango Delta, Botswana. Journal of Arid Environments. 2007;68(1):77–87. https://doi.org/10.1016/j.jaridenv.2005.10.023.

113. Ramberg L, Lindholm M, Hessen DO, Murray-Hudson M, Bonyongo C, Heinl M, et al. Aquatic ecosystem responses to fire and flood size in the Okavango Delta: observations from the seasonal floodplains. Wetlands Ecology and Management. 2010;18(5):587–95. doi: 10.1007/s11273-010-9195-x

114. Mohamed Y, Savenije HHG. Impact of climate variability on the hydrology of the Sudd wetland: signals derived from long term (1900–2000) water balance computations. Wetlands Ecology and Management. 2014;22(2):191–8. doi: 10.1007/s11273-014-9337-7

115. Petersen G, Sutcliffe JV, Fohrer N. Morphological analysis of the Sudd region using land survey and remote sensing data. Earth Surface Processes and Landforms. 2008;33(11):1709–20. doi: 10.1002/esp.1643

116. Walsh MK, Whitlock C, Bartlein PJ. 1200 years of fire and vegetation history in the Willamette Valley, Oregon and Washington, reconstructed using high-resolution macroscopic charcoal and pollen analysis. Palaeogeography, Palaeoclimatology, Palaeoecology. 2010;297(2):273–89. https://doi.org/10.1016/j.palaeo.2010.08.007.

117. Spencer J, Jones KB, Gamble DW, Benedetti MM, Taylor AK, Lane CS. Late-Quaternary records of vegetation and fire in southeastern North Carolina from Jones Lake and Singletary Lake. Quaternary Science Reviews. 2017;174:33–53. https://doi.org/10.1016/j.quascirev.2017.09.001.

118. Just MG, Hohmann MG, Hoffmann WA. Where fire stops: vegetation structure and microclimate influence fire spread along an ecotonal gradient. Plant Ecology. 2016;217(6):631–44. doi: 10.1007/s11258-015-0545-x

119. Sunderman SO, Weisberg PJ. Predictive modelling of burn probability and burn severity in a desert spring ecosystem. International Journal of Wildland Fire. 2012;21(8):1014–24.

120. O’Connor T, Mulqueeny C, Goodman P. Determinants of spatial variation in fire return period in a semiarid African savanna. International Journal of Wildland Fire. 2011;20(4):540–9.

121. Scott AC, Damblon F. Charcoal: Taphonomy and significance in geology, botany and archaeology. Palaeogeography, Palaeoclimatology, Palaeoecology. 2010;291(1):1–10. https://doi.org/10.1016/j.palaeo.2010.03.044.

122. Crawford AJ, Belcher CM. Charcoal morphometry for paleoecological analysis: The effects of fuel type and transportation on morphological parameters. Applications in Plant Sciences. 2014;2(8):1400004. doi: 10.3732/apps.1400004 25202644

123. Ohlson M, Tryterud E. Interpretation of the charcoal record in forest soils: forest fires and their production and deposition of macroscopic charcoal. The Holocene. 2000;10(4):519–25. doi: 10.1191/095968300667442551

124. Pisaric MFJ. Long-distance transport of terrestrial plant material by convection resulting from forest fires. Journal of Paleolimnology. 2002;28(3):349–54. doi: 10.1023/a:1021630017078

125. Higuera PE, Peters ME, Brubaker LB, Gavin DG. Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quaternary Science Reviews. 2007;26(13):1790–809. https://doi.org/10.1016/j.quascirev.2007.03.010.

126. Nichols GJ, Cripps JA, Collinson ME, Scott AC. Experiments in waterlogging and sedimentology of charcoal: results and implications. Palaeogeography, Palaeoclimatology, Palaeoecology. 2000;164(1):43–56. https://doi.org/10.1016/S0031-0182(00)00174-7.

127. Gardner JJ, Whitlock C. Charcoal accumulation following a recent fire in the Cascade Range, northwestern USA, and its relevance for fire-history studies. The Holocene. 2001;11(5):541–9. doi: 10.1191/095968301680223495

128. Lynch JA, Clark JS, Stocks BJ. Charcoal production, dispersal, and deposition from the Fort Providence experimental fire: interpreting fire regimes from charcoal records in boreal forests. Canadian Journal of Forest Research. 2004;34(8):1642–56. doi: 10.1139/x04-071

129. Gumbricht T, McCarthy J, McCarthy TS. Channels, wetlands and islands in the Okavango Delta, Botswana, and their relation to hydrological and sedimentological processes. Earth Surface Processes and Landforms. 2004;29(1):15–29. https://doi.org/10.1002/esp.1008.

130. Rogers K, Ralph TJ. Floodplain wetland biota in the Murray-Darling Basin: water and habitat requirements. Collingwood, Victoria: CSIRO PUBLISHING; 2010.

131. Carcaillet C. Are Holocene wood-charcoal fragments stratified in alpine and subalpine soils? Evidence from the Alps based on AMS 14C dates. The Holocene. 2001;11(2):231–42. doi: 10.1191/095968301674071040

132. Bird MI, Moyo C, Veenendaal EM, Lloyd J, Frost P. Stability of elemental carbon in a savanna soil. Global Biogeochemical Cycles. 1999;13(4):923–32. doi: 10.1029/1999gb900067

133. Bird MI, Wynn JG, Saiz G, Wurster CM, McBeath A. The Pyrogenic Carbon Cycle. Annual Review of Earth and Planetary Sciences. 2015;43(1):273–98. doi: 10.1146/annurev-earth-060614-105038

134. Berney P. Gwydir Wetlands: impacts of water regime and grazing on floodplain wetlands: University of New England 2011.

135. Whalley RDB, Price JN, Macdonald MJ, Berney PJ. Drivers of change in the Social-Ecological Systems of the Gwydir Wetlands and Macquarie Marshes in northern New South Wales, Australia. The Rangeland Journal. 2011;33(2):109–19. https://doi.org/10.1071/RJ11002.

136. Isbell RF. The Australian soil classification / R.F. Isbell. Melbourne: Melbourne: CSIRO Publishing; 1996.

137. Li Y, Xu X, Zhao P. Post-fire dispersal characteristics of charcoal particles in the Daxing’an Mountains of north-east China and their implications for reconstructing past fire activities. International Journal of Wildland Fire. 2017;26(1):46–57. https://doi.org/10.1071/WF16115.


Článek vyšel v časopise

PLOS One


2019 Číslo 10