Quantitation of eumelanin and pheomelanin markers in diverse biological samples by HPLC-UV-MS following solid-phase extraction


Autoři: Susanne Affenzeller aff001;  Holm Frauendorf aff002;  Tobias Licha aff003;  Daniel J. Jackson aff001;  Klaus Wolkenstein aff001
Působiště autorů: Department of Geobiology, Georg-August University, Göttingen, Germany aff001;  Institute of Organic & Biomolecular Chemistry, Georg-August University, Göttingen, Germany aff002;  Department of Applied Geology, Georg-August University, Göttingen, Germany aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223552

Souhrn

Eumelanin and pheomelanin are well known and common pigments found in nature. However, their complex polymer structure and high thermostability complicate their direct chemical identification. A widely used analytical method is indirect determination using HPLC with UV detection of both types of melanin by their most abundant oxidation products: pyrrole-2,3-dicarboxylic acid (PDCA), pyrrole-2,3,5-tricarboxylic acid (PTCA), thiazole-4,5-dicarboxylic acid (TDCA), and thiazole-2,4,5-tricarboxylic acid (TTCA). An increasing interest in pigmentation in biological research led us to develop a highly sensitive and selective method to identify and quantify these melanin markers in diverse biological samples with complex matrices. By introducing solid-phase extraction (SPE, reversed-phase) following alkaline oxidation we could significantly decrease background signals while maintaining recoveries greater than 70%. Our HPLC-UV-MS method allows for confident peak identification via exact mass information in corresponding UV signals used for quantitation. In addition to synthetic melanin and Sepia officinalis ink as reference compounds eumelanin markers were detected in brown human hair and a brown bivalve shell (Mytilus edulis). Brown feathers from the common chicken (Gallus g. domesticus) yielded all four eumelanin and pheomelanin markers. The present method can be easily adapted for a wide range of future studies on biological samples with unknown melanin content.

Klíčová slova:

High performance liquid chromatography – Chickens – Melanin – Oxidation – Pigments – Percutaneous transluminal coronary angioplasty – Feathers – Ultraviolet spectroscopy


Zdroje

1. Comfort A. The pigmentation of molluscan shells. Biol Rev. 1951;26(3):285–301.

2. Swan GA, Waggott A. Studies related to the chemistry of melanins. Part X. Quantitative assessment of different types of units present in dopa-melanin. J Chem Soc C 1970;(10):1409–1418.

3. Swan G. Structure, chemistry, and biosynthesis of the melanins. Fortschr Chem Org Naturst. Springer, Vienna; 1974. pp. 521–582. 4372136

4. Riley PA. Melanin. Int J Biochem Cell Biol. 1997;29(11):1235–1239. doi: 10.1016/s1357-2725(97)00013-7 9451820

5. Prota G. Progress in the chemistry of melanins and related metabolites. Med Res Rev. 1988;8(4):525–556. 3057299

6. Wakamatsu K, Ito S. Advanced chemical methods in melanin determination. Pigment Cell Res. 2002;15(3):174–183. 12028581

7. Ito S, Wakamatsu K. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res. 2003;16(5):523–531. 12950732

8. Lerner AB, Fitzpatrick TB. Biochemistry of melanin formation. Physiol Rev. 1950;30(1):91–126. doi: 10.1152/physrev.1950.30.1.91 15403662

9. Binns F, King JA, Mishra SN, Percival A, Robson NC, Swan GA, et al. Studies related to the chemistry of melanins. Part XIII. Studies on the structure of dopamine-melanin. J Chem Soc C. 1970(15):2063–2070.

10. Ito S. Reexamination of the structure of eumelanin. Biochim Biophys Acta Gen Subj. 1986;883(1):155–161.

11. d'Ischia M, Napolitano A, Prota G. Peroxidase as an alternative to tyrosinase in the oxidative polymerization of 5,6-dihydroxyindoles to melanin(s). Biochim Biophys Acta Gen Subj. 1991;1073(2):423–430.

12. Prota G. Melanins and Melanogenesis. New York: Academic Press; 1992. pp. 1–290.

13. Prota G. The chemistry of melanins and melanogenesis. Fortschr Chem Org Naturst. Springer, Vienna; 1995. pp. 93–148. 7782013

14. Piattelli M, Nicolaus RA. The structure of melanins and melanogenesis—I: The structure of melanin in Sepia. Tetrahedron. 1961;15(1–4):66–75.

15. Nicolaus RA, Piattelli M, Fattorusso E. The structure of melanins and melanogenesis—IV: On some natural melanins. Tetrahedron. 1964;20(5):1163–1172. 5879158

16. Ito S, Fujita K. Microanalysis of eumelanin and pheomelanin in hair and melanomas by chemical degradation and liquid chromatography. Anal Biochem. 1985;144(2):527–536. doi: 10.1016/0003-2697(85)90150-2 3993914

17. Napolitano A, Pezzella A, Vincensi MR, Prota G. Oxidative degradation of eumelanins to pyrrole acids: a model study. Tetrahedron 1995;51:5913–5920.

18. Ito S, Wakamatsu K. Chemical degradation of melanins: application to identification of dopamine melanin. Pigment Cell Res. 1998;11(2):120–126. 9585251

19. Wakamatsu K, Fujikawa K, Zucca FA, Zecca L, Ito S. The structure of neuromelanin as studied by chemical degradative methods. J Neurochem. 2003;86(4):1015–1023. doi: 10.1046/j.1471-4159.2003.01917.x 12887698

20. Ito S, Nakanishi Y, Valenzuela RK, Brilliant MH, Kolbe L, Wakamatsu K. Usefulness of alkaline hydrogen peroxide oxidation to analyze eumelanin and pheomelanin in various tissue samples: application to chemical analysis of human hair melanins. Pigment Cell Melanoma Res. 2011;24(4): 605–613. doi: 10.1111/j.1755-148X.2011.00864.x 21535429

21. McGraw KJ, Wakamatsu K, Ito S, Nolan PM, Jouventin P, Dobson FS, et al. You can't judge a pigment by its color: carotenoid and melanin content of yellow and brown feathers in swallows, bluebirds, penguins, and domestic chickens. The Condor. 2004;106(2):390–395.

22. Chen SR, Jiang B, Zheng JX, Xu GY, Li JY, Yang N. Isolation and characterization of natural melanin derived from silky fowl (Gallus gallus domesticus Brisson). Food Chem. 2008;111(3):745–749.

23. Glass K, Ito S, Wilby PR, Sota T, Nakamura A, Bowers CR, et al. Direct chemical evidence for eumelanin pigment from the Jurassic period. Proc Natl Acad Sci U S A. 2012;109(26):10218–10223. doi: 10.1073/pnas.1118448109 22615359

24. Kronforst MR, Barsh GS, Kopp A, Mallet J, Monteiro A, Mullen SP, et al. Unraveling the thread of nature’s tapestry: the genetics of diversity and convergence in animal pigmentation. Pigment Cell Melanoma Res. 2012;25(4):411–433. doi: 10.1111/j.1755-148X.2012.01014.x 22578174

25. Williams ST, Ito S, Wakamatsu K, Goral T, Edwards NP, Wogelius RA, et al. Identification of shell colour pigments in marine snails Clanculus pharaonius and C. margaritarius (Trochoidea; Gastropoda). PloS One. 2016;11(7):e0156664. doi: 10.1371/journal.pone.0156664 27367426

26. Cuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G, Hauber ME, et al. The biology of color. Science. 2017;357(6350):eaan0221. doi: 10.1126/science.aan0221 28774901

27. Williams ST. Molluscan shell colour. Biol Rev. 2017;92(2):1039–1058. doi: 10.1111/brv.12268 27005683

28. Yu F, Pan Z, Qu B, Yu X, Xu K., Deng Y, et al. Identification of a tyrosinase gene and its functional analysis in melanin synthesis of Pteria penguin. Gene. 2018;656:1–8. doi: 10.1016/j.gene.2018.02.060 29496552

29. Rioux B, Rouanet J, Akil H, Besse S, Debiton E, Bouchon B, et al. Determination of eumelanin and pheomelanin in melanomas using solid-phase extraction and high performance liquid chromatography–diode array detection (HPLC-DAD) analysis. J Chromatogr B. 2019; 1113:60–68

30. Petzel-Witt S, Meier SI, Schubert Zsilavecz M, Toennes SW. PTCA (1H pyrrole 2,3,5 tricarboxylic acid) as a marker for oxidative hair treatment. Drug Test Anal. 2018;10(4):768–773. doi: 10.1002/dta.2305 28940782

31. d’Ischia M, Wakamatsu K, Napolitano A, Briganti S, Garcia-Borron J-C, Kovacs D, et al. Melanins and melanogenesis: methods, standards, protocols. Pigment Cell & Melanoma Research. 2013;26(5):616–633.

32. Magarelli M, Passamonti P, Renieri C. Purification, characterization and analysis of sepia melanin from commercial sepia ink (Sepia officinalis)––Purificación, caracterización y análisis de la melanina de sepia a partir de la tinta de sepia (Sepia officinalis). CES Medicina Veterinaria y Zootecnia. 2010;5(2):18–28.

33. Sealy RC, Hyde JS, Felix CC, Menon IA, Prota G. Eumelanins and pheomelanins: characterization by electron spin resonance spectroscopy. Science. 1982;217(4559):545–547. doi: 10.1126/science.6283638 6283638

34. Hao S, Hou X, Wei L, Li J, Li Z, Wang X. Extraction and identification of the pigment in the adductor muscle scar of pacific oyster Crassostrea gigas. PloS One. 2015;10(11):e0142439. doi: 10.1371/journal.pone.0142439 26555720

35. Sun X, Wu B, Zhou L, Liu Z, Dong Y, Yang A. Isolation and characterization of melanin pigment from yesso scallop Patinopecten yessoensis. J Ocean Univ China. 2017;16(2):279–284.

36. Colleary C, Dolocan A, Gardner J, Singh S, Wuttke M, Rabenstein R, et al. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils. Proc Natl Acad Sci U S A. 2015;112(41):12592–12597. doi: 10.1073/pnas.1509831112 26417094

37. Lindgren J, Sjövall P, Thiel V, Zheng W, Ito S, Wakamatsu K, et al. Soft-tissue evidence for homeothermy and crypsis in a Jurassic ichthyosaur. Nature. 2018;564(7736):359–365. doi: 10.1038/s41586-018-0775-x 30518862


Článek vyšel v časopise

PLOS One


2019 Číslo 10