Plasma mitochondrial DNA is elevated in obese type 2 diabetes mellitus patients and correlates positively with insulin resistance

Autoři: Larysa V. Yuzefovych aff001;  Viktor M. Pastukh aff001;  Mykhaylo V. Ruchko aff001;  Jon D. Simmons aff001;  William O. Richards aff002;  Lyudmila I. Rachek aff001
Působiště autorů: Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America aff001;  Department of Surgery, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article


Cells damaged by mechanical or infectious injury release proinflammatory mitochondrial DNA (mtDNA) fragments into the circulation. We evaluated the relation between plasma levels of mtDNA fragments in obese type 2 diabetes mellitus (T2DM) patients and measures of chronic inflammation and insulin resistance. In 10 obese T2DM patients and 12 healthy control (HC) subjects, we measured levels of plasma cell-free mtDNA with quantitative real-time polymerase chain reaction, and mtDNA damage in skeletal muscle with quantitative alkaline Southern blot. Also, markers of systemic inflammation and oxidative stress in skeletal muscle were measured. Plasma levels of mtDNA fragments, mtDNA damage in skeletal muscle and plasma tumor necrosis factor α levels were greater in obese T2DM patients than HC subjects. Also, the abundance of plasma mtDNA fragments in obese T2DM patients levels positively correlated with insulin resistance. To the best of our knowledge, this is the first published evidence that elevated level of plasma mtDNA fragments is associated with mtDNA damage and oxidative stress in skeletal muscle and correlates with insulin resistance in obese T2DM patients. Plasma mtDNA may be a useful biomarker for predicting and monitoring insulin resistance in obese patients.

Klíčová slova:

Blood plasma – Inflammation – Mitochondria – Mitochondrial DNA – Obesity – Oxidative stress – Skeletal muscles


1. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol 2011; 29:415–445. doi: 10.1146/annurev-immunol-031210-101322 21219177

2. Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin MA, Morio B, et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest 2008;118(2):789–800. 18188455

3. Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin CT, et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest 2009;119(3):573–81. doi: 10.1172/JCI37048 19188683

4. Hoehn KL, Salmon AB, Hohnen-Behrens C, Turner N, Hoy AJ, Maghzal GJ, et al. Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci U S A 2009;106(42):17787–92. doi: 10.1073/pnas.0902380106 19805130

5. Rachek LI, Grishko VI, Musiyenko SI, Kelley MR, LeDoux SP, Wilson GL. Conditional targeting of the DNA repair enzyme hOGG1 into mitochondria. J Biol Chem 2002;277:44932–44937. doi: 10.1074/jbc.M208770200 12244119

6. Rachek LI, Thornley NP, Grishko VI, LeDoux SP, Wilson GL. Protection of INS-1 cells from free fatty acid-induced apoptosis by targeting hOGG1 to mitochondria. Diabetes 2006; 55:1022–1028. doi: 10.2337/diabetes.55.04.06.db05-0865 16567524

7. Rachek LI, Yuzefovych LV, Ledoux SP, Julie NL, Wilson GL. Troglitazone, but not rosiglitazone, damages mitochondrial DNA and induces mitochondrial dysfunction and cell death in human hepatocytes. Toxicol Appl Pharmacol 2009; 240:348–354. doi: 10.1016/j.taap.2009.07.021 19632256

8. Ruchko M, Gorodnya O, LeDoux SP, Alexeyev MF, Al-Mehdi AB, Gillespie MN. Mitochondrial DNA damage triggers mitochondrial dysfunction and apoptosis in oxidant-challenged lung endothelial cells. Am J Physiol Lung Cell Mol Physiol 2005; 288:L530–L535. doi: 10.1152/ajplung.00255.2004 15563690

9. Ruchko MV, Gorodnya OM, Zuleta A, Pastukh VM, Gillespie MN. The DNA glycosylase Ogg1 defends against oxidant-induced mtDNA damage and apoptosis in pulmonary artery endothelial cells. Free Radic Biol Med 2011; 50:1107–1113. doi: 10.1016/j.freeradbiomed.2010.10.692 20969951

10. Yuzefovych LV, Solodushko VA, Wilson GL, Rachek LI. Protection from palmitate-induced mitochondrial DNA damage prevents from mitochondrial oxidative stress, mitochondrial dysfunction, apoptosis, and impaired insulin signaling in rat L6 skeletal muscle cells. Endocrinology 2012; 153:92–100. doi: 10.1210/en.2011-1442 22128025

11. Yuzefovych LV, Schuler AM, Chen J, Alvarez DF, Eide L, Ledoux SP, et al. Alteration of mitochondrial function and insulin sensitivity in primary mouse skeletal muscle cells isolated from transgenic and knockout mice: role of OGG1. Endocrinology 2013; 154:2640–2649. doi: 10.1210/en.2013-1076 23748360

12. Yuzefovych LV, Musiyenko SI, Wilson GL, Rachek LI. Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS One 2013; 8:e54059. doi: 10.1371/journal.pone.0054059 23342074

13. West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol 2017; 17:363–375. doi: 10.1038/nri.2017.21 28393922

14. Boyapati RK, Tamborska A, Dorward DA, Ho GT. Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases. F1000Res 2017; 6:169. doi: 10.12688/f1000research.10397.1 28299196

15. Manfredi AA, Rovere-Querini P. The mitochondrion–a Trojan horse that kicks off inflammation? N Engl J Med 2010; 362:2132–2134. doi: 10.1056/NEJMcibr1003521 20519686

16. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011; 469:221–225. doi: 10.1038/nature09663 21124315

17. Simmons JD, Lee YL, Mulekar S, Kuck JL, Brevard SB, Gonzalez RP, et al. Elevated levels of plasma mitochondrial DNA DAMPs are linked to clinical outcome in severely injured human subjects. Ann Surg 2013; 258(4):591–6; discussion 596–8. doi: 10.1097/SLA.0b013e3182a4ea46 23979273

18. Rothfuss O, Gasser T, Patenge N. Analysis of differential DNA damage in the mitochondrial genome employing a semi-long run real-time PCR approach. Nucleic Acids Res 2010; 38: e24. doi: 10.1093/nar/gkp1082 19966269

19. Meissner C, Bruse P, Mohamed SA, Schulz A, Warnk H, Storm T, et al. The 4977 bp deletion of mitochondrial DNA in human skeletal muscle, heart and different areas of the brain: a useful biomarker or more? Exp Gerontol 2008; 43(7):645–52. doi: 10.1016/j.exger.2008.03.004 18439778

20. Mitsuhashi S, Hatakeyama H, Karahashi M, Koumura T, Nonaka I, Hayashi YK, et al. Muscle choline kinase beta defect causes mitochondrial dysfunction and increased mitophagy. Hum Mol Genet 2011; 20(19):3841–51. doi: 10.1093/hmg/ddr305 21750112

21. Nishimoto S, Fukuda D, Higashikuni Y, Tanaka K, Hirata Y, Murata C, et al. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance. Sci Adv 2016; 2(3):e1501332. doi: 10.1126/sciadv.1501332 27051864

22. Cormio A, Milella F, Marra M, Pala M, Lezza AM, Bonfigli AR, et al. Variations at the H-strand replication origins of mitochondrial DNA and mitochondrial DNA content in the blood of type 2 diabetes patients. Biochim Biophys Acta 2009;1787(5):547–52. doi: 10.1016/j.bbabio.2009.01.008 19344660

23. Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A 1997; 94:514–519. doi: 10.1073/pnas.94.2.514 9012815

24. Park SY, Choi GH, Choi HI, Ryu J, Jung CY, Lee W. Depletion of mitochondrial DNA causes impaired glucose utilization and insulin resistance in L6 GLUT4myc myocytes. J Biol Chem 2005; 280(11):9855–64. doi: 10.1074/jbc.M409399200 15764607

25. Liang P, Hughes V, Fukagawa NK. Increased prevalence of mitochondrial DNA deletions in skeletal muscle of older individuals with impaired glucose tolerance: possible marker of glycemic stress. Diabetes 1997; 46:920–923. doi: 10.2337/diab.46.5.920 9133566

26. Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 2005;54(1):8–14. doi: 10.2337/diabetes.54.1.8 15616005

27. Dos Santos JM, de Oliveira DS, Moreli ML, Benite-Ribeiro SA. The role of mitochondrial DNA damage at skeletal muscle oxidative stress on the development of type 2 diabetes. Mol Cell Biochem 2018; 449:251–255. doi: 10.1007/s11010-018-3361-5 29679277

28. Grazioli S, Pugin J. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Front Immunol 2018; 9:832. doi: 10.3389/fimmu.2018.00832 29780380

29. Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature; 2012; 485(7397):251–5. doi: 10.1038/nature10992 22535248

30. Pinti M, Cevenini E, Nasi M, De Biasi S, Salvioli S, Monti D, et al. Circulating mitochondrial DNA increases with age and is a familiar trait: Implications for “inflamm-aging”. Eur J Immunol 2014; 44(5):1552–62. doi: 10.1002/eji.201343921 24470107

31. Podlesniy P, Figueiro-Silva J, Llado A, Antonell A, Sanchez-Valle R, Alcolea D, et al. Locerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease. Ann Neurol 2013; 74(5):655–68. doi: 10.1002/ana.23955 23794434

32. Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med 2016; 22:146–53. doi: 10.1038/nm.4027 26779811

33. Boyapati RK, Dorward DA, Tamborska A, Kalla R, Ventham NT, Doherty MK. Mitochondrial DNA Is a Pro-Inflammatory Damage-Associated Molecular Pattern Released During Active IBD. Inflamm Bowel Dis 2018; 24:2113–2122. doi: 10.1093/ibd/izy095 29718255

34. Liu J, Zou Y, Tang Y, Xi M, Xie L, Zhang Q, et al. Circulating cell-free mitochondrial deoxyribonucleic acid is increased in coronary heart disease patients with diabetes mellitus. J Diabetes Investig 2016;7(1):109–14. doi: 10.1111/jdi.12366 26816608

35. Grazioli S, Pugin J. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases 2018; Front Immunol 9:832. doi: 10.3389/fimmu.2018.00832 29780380

36. Boudreau LH, Duchez AC, Cloutier N, Soulet D, Martin N, Bollinger J, et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 2014; 124:2173–83. doi: 10.1182/blood-2014-05-573543 25082876

37. Caielli S, Athale S, Domic B, Murat E, Chandra M, Banchereau R, et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J Exp Med 2016; 213:697–713. doi: 10.1084/jem.20151876 27091841

38. Hotz MJ, Qing D, Shashaty MGS, Zhang P, Faust H, Sondheimer N. Red Blood Cells Homeostatically Bind Mitochondrial DNA through TLR9 to Maintain Quiescence and to Prevent Lung Injury. Am J Respir Crit Care Med 2017; 197:470–480.

39. Kuck JL, Obiako BO, Gorodnya OM, Pastukh VM, Kua J, Simmons JD, et al. Mitochondrial DNA damage-associated molecular patterns mediate a feed-forward cycle of bacteria-induced vascular injury in perfused rat lungs. Am J Physiol Lung Cell Mol Physiol; 2015; 308(10):L1078–85. doi: 10.1152/ajplung.00015.2015 25795724

40. Shokolenko I, Venediktova N, Bochkareva A, Wilson GL, Alexeyev MF. Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res 2009; 37:2539–2548. doi: 10.1093/nar/gkp100 19264794

41. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012;36(3):401–14. doi: 10.1016/j.immuni.2012.01.009 22342844

42. Collins LV, Hajizadeh S, Holme E, Jonsson IM, Tarkowski A. Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J Leukoc Biol 2004;75(6):995–1000. doi: 10.1189/jlb.0703328 14982943

43. Garcia-Martinez I, Santoro N, Chen Y, Hoque R, Ouyang X, Caprio S, et al. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J Clin Invest 2016; 126(3):859–64. doi: 10.1172/JCI83885 26808498

44. Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes 2013;62(1):194–204. doi: 10.2337/db12-0420 23086037

45. Stienstra R, van Diepen JA, Tack CJ, Zaki MH, van de Veerdonk FL, Perera D, et al. Inflammasome is a central player in the induction of obesity and insulin resistance. Proc Natl Acad Sci U S A 2011; 108(37):15324–9. doi: 10.1073/pnas.1100255108 21876127

46. Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 2011; 17:179–188. doi: 10.1038/nm.2279 21217695

47. Bloomgarden ZT Measures of insulin sensitivity. Clin Lab Med 2006; 26:611–633. doi: 10.1016/j.cll.2006.06.007 16938587

48. Muniyappa R, Lee S, Chen H, Quon MJ. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab 2008; 294:E15–26 doi: 10.1152/ajpendo.00645.2007 17957034

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden