Plasma sCD36 as non-circadian marker of chronic circadian disturbance in shift workers


Autoři: Daniella van de Langenberg aff001;  Jelle J. Vlaanderen aff001;  Martijn E. T. Dolle aff002;  Aase Handberg aff003;  Roel C. H. Vermeulen aff001;  Linda W. M. van Kerkhof aff002
Působiště autorů: IRAS, Institute for Risk Assessment, Utrecht University, Utrecht, the Netherlands aff001;  RIVM, National Institute for Public Health and the Environment, Bilthoven, the Netherlands aff002;  Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark aff003;  Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark aff004
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223522

Souhrn

Shift work induces chronic circadian disturbance, which might result in increased health risks, including cardio-metabolic diseases. Previously, we identified sCD36 as a potential non-circadian biomarker of chronic circadian disturbance in mice. The aim of the current study (n = 232 individuals) was to identify whether sCD36 measured in plasma can be used as a non-circadian marker of chronic circadian disturbance in humans, which would allow its use to measure the effects of interventions and monitoring in large-scale studies. We compared levels of plasma sCD36 of day workers with recent (< 2 years) and experienced (> 5 years) night-shift workers within the Klokwerk study. We detected no differences in sCD36 levels between day workers and recent or experienced night-shift workers, measured during a day or afternoon shift. In addition, sCD36 levels measured directly after a night shift were not different from sCD36 levels measured during day or afternoon shifts, indicating no acute effect of night shifts on sCD36 levels in our study. In summary, our study does not show a relation between night-shift work experience (recent or long-term) and plasma levels of sCD36. Since we do not know if and for which time span night-shift work is associated with changes in sCD36 levels, and our study was relatively small and cross-sectional, further evidence for an association between chronic circadian disruption and this candidate biomarker sCD36 should be gathered from large cohort studies.

Klíčová slova:

Biomarkers – Blood – Blood plasma – Circadian rhythms – Cohort studies – Chronobiology – Obesity – Specimen disruption


Zdroje

1. Parent-Thirion A, Biletta I, Cabrita J, Vargas O, Vermeylen G, Wiczynska A, et al. 1758 6th european working conditions survey: job quality in europe. In: Semi–Plenary Sessions [Internet]. BMJ Publishing Group Ltd; 2018 [cited 2018 Dec 21]. p. A12.3-A13. Available from: http://oem.bmj.com/lookup/doi/10.1136/oemed-2018-ICOHabstracts.36

2. van de Langenberg D, Vlaanderen JJ, Dollé ME, Rookus MA, van Kerkhof LW, Vermeulen RC. Diet, Physical Activity, and Daylight Exposure Patterns in Night-Shift Workers and Day Workers. Ann Work Expo Heal [Internet]. 2018 Dec 14 [cited 2018 Dec 21]; Available from: https://academic.oup.com/annweh/advance-article/doi/10.1093/annweh/wxy097/5248266

3. Drake CL, Roehrs T, Richardson G, Walsh JK RT. Shift Work Sleep Disorder: Prevalence and Consequences Beyond that of Symptomatic Day Workers [Internet]. Sleep. 2004 [cited 2014 Jan 27]. Available from: http://journalsleep.org/ViewAbstract.aspx?pid=26073

4. Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, et al. Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst [Internet]. 2001 Oct 17 [cited 2014 Jan 27];93(20):1563–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11604480 doi: 10.1093/jnci/93.20.1563 11604480

5. Van Dycke KCG, Rodenburg W, van Oostrom CTM, van Kerkhof LWM, Pennings JLA, Roenneberg T, et al. Chronically Alternating Light Cycles Increase Breast Cancer Risk in Mice. Curr Biol [Internet]. 2015 Jul [cited 2015 Jul 20];25(14):1932–7. Available from: http://www.sciencedirect.com/science/article/pii/S0960982215006776 doi: 10.1016/j.cub.2015.06.012 26196479

6. Mirick DK, Davis S. Melatonin as a biomarker of circadian dysregulation. Cancer Epidemiol Biomarkers Prev [Internet]. 2008 Dec [cited 2014 Jan 27];17(12):3306–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19064543 doi: 10.1158/1055-9965.EPI-08-0605 19064543

7. Ueda HR, Chen W, Minami Y, Honma S, Honma K, Iino M, et al. Molecular-timetable methods for detection of body time and rhythm disorders from single-time-point genome-wide expression profiles. Proc Natl Acad Sci [Internet]. 2004 Aug 3 [cited 2019 Apr 24];101(31):11227–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15273285 doi: 10.1073/pnas.0401882101 15273285

8. Braun R, Kath WL, Iwanaszko M, Kula-Eversole E, Abbott SM, Reid KJ, et al. Universal method for robust detection of circadian state from gene expression. Proc Natl Acad Sci [Internet]. National Academy of Sciences; 2018 Sep 25 [cited 2019 Apr 24];115(39):E9247–56. Available from: https://www.pnas.org/content/115/39/E9247 doi: 10.1073/pnas.1800314115 30201705

9. Wittenbrink N, Ananthasubramaniam B, Münch M, Koller B, Maier B, Weschke C, et al. High-accuracy determination of internal circadian time from a single blood sample. J Clin Invest [Internet]. 2018 Aug 31 [cited 2019 Apr 24];128(9):3826–39. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29953415 doi: 10.1172/JCI120874 29953415

10. Van Dycke KCG, Pennings JLA, van Oostrom CTM, van Kerkhof LWM, van Steeg H, van der Horst GTJ, et al. Biomarkers for circadian rhythm disruption independent of time of day. PLoS One [Internet]. Public Library of Science; 2015 Jan 18 [cited 2016 Mar 15];10(5):e0127075. Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0127075 doi: 10.1371/journal.pone.0127075 25984797

11. Koonen DPY, Jensen MK, Handberg A. Soluble CD36− a marker of the (pathophysiological) role of CD36 in the metabolic syndrome? Arch Physiol Biochem. 2011 May;117(2):57–63. doi: 10.3109/13813455.2010.543136 21250778

12. Handberg A, Levin K, Højlund K, Beck-Nielsen H. Identification of the Oxidized Low-Density Lipoprotein Scavenger Receptor CD36 in Plasma. Circulation [Internet]. 2006 Sep 12 [cited 2018 Dec 21];114(11):1169–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16952981 doi: 10.1161/CIRCULATIONAHA.106.626135 16952981

13. Koonen DPY, Jensen MK, Handberg A. Soluble CD36− a marker of the (pathophysiological) role of CD36 in the metabolic syndrome? Arch Physiol Biochem [Internet]. 2011 May 21 [cited 2018 Dec 21];117(2):57–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21250778 doi: 10.3109/13813455.2010.543136 21250778

14. Knøsgaard L, Thomsen SB, Støckel M, Vestergaard H, Handberg A. Circulating sCD36 is associated with unhealthy fat distribution and elevated circulating triglycerides in morbidly obese individuals. Nutr Diabetes [Internet]. Nature Publishing Group; 2014 Apr 7 [cited 2018 Dec 21];4(4):e114. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24710072

15. Pan X, Jiang X-C, Hussain MM. Impaired Cholesterol Metabolism and Enhanced Atherosclerosis in Clock Mutant Mice. Circulation [Internet]. 2013 Oct 15 [cited 2018 Dec 21];128(16):1758–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24014832 doi: 10.1161/CIRCULATIONAHA.113.002885 24014832

16. Liani R, Halvorsen B, Sestili S, Handberg A, Santilli F, Vazzana N, et al. Plasma levels of soluble CD36, platelet activation, inflammation, and oxidative stress are increased in type 2 diabetic patients. Free Radic Biol Med [Internet]. 2012 Apr 15 [cited 2018 Dec 21];52(8):1318–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22343420 doi: 10.1016/j.freeradbiomed.2012.02.012 22343420

17. Pan X, Jiang X-C, Hussain MM. Impaired Cholesterol Metabolism and Enhanced Atherosclerosis in Clock Mutant Mice. Circulation. 2013 Oct;128(16):1758–69. doi: 10.1161/CIRCULATIONAHA.113.002885 24014832

18. van de Langenberg D, Vlaanderen JJ, Dollé ME, Rookus MA, van Kerkhof LW, Vermeulen RC. Diet, Physical Activity, and Daylight Exposure Patterns in Night-Shift Workers and Day Workers. Ann Work Expo Heal. 2018 Dec;

19. Centers for Disease Control and Prevention (CDC). Vital signs: current cigarette smoking among adults aged ≥18 years—United States, 2005–2010. MMWR Morb Mortal Wkly Rep [Internet]. 2011 Sep 9 [cited 2017 Oct 30];60(35):1207–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21900875 21900875

20. Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol [Internet]. 1976 Jan 1 [cited 2014 Jan 21];4(2):97–110. Available from: http://europepmc.org/abstract/MED/1027738/reload=0 1027738

21. Roenneberg T, Kuehnle T, Juda M, Kantermann T, Allebrandt K, Gordijn M, et al. Epidemiology of the human circadian clock. Sleep Med Rev [Internet]. 2007 Dec [cited 2014 Jan 27];11(6):429–38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17936039 doi: 10.1016/j.smrv.2007.07.005 17936039

22. Handberg A, Levin K, Højlund K, Beck-Nielsen H. Identification of the Oxidized Low-Density Lipoprotein Scavenger Receptor CD36 in Plasma. Circulation. 2006 Sep;114(11):1169–76. doi: 10.1161/CIRCULATIONAHA.106.626135 16952981

23. Lykkeboe S, Larsen AL, Handberg A. Lack of consistency between two commercial ELISAs and against an in-house ELISA for the detection of CD36 in human plasma. Clin Chem Lab Med [Internet]. 2012 Jan 1 [cited 2019 Apr 24];50(6):1071–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22706248 doi: 10.1515/cclm-2011-0950 22706248

24. Buuren S van, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations in R [Internet]. Journal of Statistical Software. American Statistical Association; 2011 [cited 2016 May 19]. Available from: http://doc.utwente.nl/78938/1/Buuren11mice.pdf

25. Knøsgaard L, Thomsen SB, Støckel M, Vestergaard H, Handberg A. Circulating sCD36 is associated with unhealthy fat distribution and elevated circulating triglycerides in morbidly obese individuals. Nutr Diabetes. Nature Publishing Group; 2014 Apr;4(4):e114.

26. Fernández-Real J-M, Handberg A, Ortega F, Højlund K, Vendrell J, Ricart W. Circulating soluble CD36 is a novel marker of liver injury in subjects with altered glucose tolerance. J Nutr Biochem [Internet]. Elsevier; 2009 Jun 1 [cited 2019 Apr 24];20(6):477–84. Available from: https://www.sciencedirect.com/science/article/pii/S0955286308001174 doi: 10.1016/j.jnutbio.2008.05.009 18789673

27. Knøsgaard L, Kazankov K, Birkebæk NH, Holland-Fischer P, Lange A, Solvig J, et al. Reduced sCD36 following weight loss corresponds to improved insulin sensitivity, dyslipidemia and liver fat in obese children. Eur J Clin Nutr [Internet]. 2016 Sep 8 [cited 2019 Apr 24];70(9):1073–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27273071 doi: 10.1038/ejcn.2016.88 27273071

28. Botha J, Nielsen MH, Christensen MH, Vestergaard H, Handberg A. Bariatric surgery reduces CD36-bearing microvesicles of endothelial and monocyte origin. Nutr Metab (Lond) [Internet]. 2018 Dec 23 [cited 2019 Apr 24];15(1):76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30386406


Článek vyšel v časopise

PLOS One


2019 Číslo 10