Detection and genetic characterization of Echinococcus granulosus mitochondrial DNA in serum and formalin-fixed paraffin embedded cyst tissue samples of cystic echinococcosis patients


Autoři: Maryam Moradi aff001;  Ahmad Reza Meamar aff002;  Lame Akhlaghi aff002;  Mona Roozbehani aff002;  Elham Razmjou aff002
Působiště autorů: Department of Parasitology and Mycology, School of Medicine, International Campus, Iran University of Medical Sciences, Tehran, Iran aff001;  Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224501

Souhrn

Cystic echinococcosis (CE) is a worldwide zoonotic disease caused by the larval stage of Echinococcus granulosus. We investigated the presence of E. granulosus-specific DNA in the serum of CE patients by detecting the cytochrome c oxidase I (cox1) and NADH dehydrogenase subunit I (nad1) mitochondrial genes. Serum and formalin-fixed paraffin embedded (FFPE) cyst tissue samples of 80 CE patients were analyzed. The extracted DNA of samples was submitted to PCR amplification of cox1 and nad1 genes, and products were sequenced and genotyped. Nineteen (23.8%; 95% CI 15.8–34.1) serum and 78 (97.5%; 95% CI 91.3–99.3) FFPE cyst tissue samples were successfully amplified with at least one gene. Echinococcus DNA was detected in the sera of 15.0% (95% CI: 8.8–24.4) and 10.0% (95% CI: 5.2–18.5) and in cyst tissue of 91.3% (95% CI: 83.0–95.7) and 83.8% (95% CI: 74.2–90.3) of 80 patients by cox1 and nad1 gene, respectively. Four genotypes of E. granulosus were distinguished in the CE patients, with predominance of genotype G1, followed by G3, G2, and G6. The finding of E. granulosus DNA in 23.8% of serum samples from CE patients confirmed that E. granulosus releases cell-free DNA into the circulatory system, but quantities may be inadequate for the diagnosis of CE. Genotype G1 predominance suggests the sheep-dog cycle as the primary route of human infection.

Klíčová slova:

DNA – Mitochondria – Multiple alignment calculation – Nucleotide sequencing – Polymerase chain reaction – Sequence alignment – Echinococcosis – Cestodes


Zdroje

1. Ancarola ME, Marcilla A, Herz M, Macchiaroli N, Pérez M, Asurmendi S, et al. Cestode parasites release extracellular vesicles with microRNAs and immunodiagnostic protein cargo. Int J Parasitol. 2017;47(10):675–86.https://doi.org/10.1016/j.ijpara.2017.05.003.

2. Nakao M, McManus D, Schantz P, Craig P, Ito A. A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology. 2006;134(5):713–22.

3. Thompson RA, McManus DP. Towards a taxonomic revision of the genus Echinococcus. Trends Parasitol. 2002;18(10):452–7. 12377596

4. Eckert J, Deplazes P. Biological, epidemiological, and clinical aspects of echinococcosis, a zoonosis of increasing concern. Clin Microbiol Rev. 2004;17(1):107–35. doi: 10.1128/CMR.17.1.107-135.2004 14726458

5. Deplazes P, Rinaldi L, Alvarez Rojas CA, Torgerson PR, Harandi MF, Romig T, et al. Chapter Six—Global distribution of alveolar and cystic echinococcosis. In: Thompson RCA, Deplazes P, Lymbery AJ, editors. Adv Parasitol. 95: Academic Press; 2017. p. 315–493.

6. Rokni MB. Echinococcosis/hydatidosis in Iran. Iran J Parasitol. 2009;4(2):1–16.

7. Moradi M, Rampisheh Z, Roozbehani M, Razmjou E. A retrospective study of hydatid cysts in patients undergoing liver and lung surgery in Tehran, Iran. Heliyon. 2019;5(6):e01897. doi: 10.1016/j.heliyon.2019.e01897 31211265

8. Akbulut S, Yavuz R, Sogutcu N, Kaya B, Hatipoglu S, Senol A, et al. Hydatid cyst of the pancreas: Report of an undiagnosed case of pancreatic hydatid cyst and brief literature review. World J Gastrointest Surg. 2014;6(10):190–200. Epub 10/27. doi: 10.4240/wjgs.v6.i10.190 25346801.

9. Kern P, Menezes da Silva A, Akhan O, Müllhaupt B, Vizcaychipi KA, Budke C, et al. Chapter Four—The echinococcoses: Diagnosis, clinical Management and burden of disease. In: Thompson RCA, Deplazes P, Lymbery AJ, editors. Adv Parasitol. 96: Academic Press; 2017. p. 259–369.

10. Chaya D, Parija SC. Performance of polymerase chain reaction for the diagnosis of cystic echinococcosis using serum, urine, and cyst fluid samples. Trop Parasitol. 2014;4(1):43–6. doi: 10.4103/2229-5070.129164 24754027

11. Ezer A, Nursal TZ, Moray G, Yildirim S, Karakayali F, Noyan T, et al. Surgical treatment of liver hydatid cysts. HPB. 2006;8(1):38–42. doi: 10.1080/13651820500468000 18333237.

12. Smego RA Jr, Sebanego P. Treatment options for hepatic cystic echinococcosis. Int J Infect Dis. 2005;9(2):69–76. doi: 10.1016/j.ijid.2004.08.001 15708321

13. Bowles J, Blair D, McManus DP. Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol. 1992;54(2):165–73. doi: 10.1016/0166-6851(92)90109-w 1435857

14. Sharbatkhori M, Mirhendi H, Jex RA, Pangasa A, Campbell EB, Kia BE, et al. Genetic categorization of Echinococcus granulosus from humans and herbivorous hosts in Iran using an integrated mutation scanning-phylogenetic approach. Electrophoresis. 2009;30(15):2648–55. doi: 10.1002/elps.200900145 19637222

15. Baraquin A, Hervouet E, Richou C, Flori P, Peixoto P, Azizi A, et al. Circulating cell-free DNA in patients with alveolar echinococcosis. Mol Biochem Parasitol. 2018;222:14–20. doi: 10.1016/j.molbiopara.2018.04.004 29679605

16. Weerakoon KG, McManus DP. Cell-free DNA as a diagnostic tool for human parasitic infections. Trends Parasitol. 2016;32(5):378–91. doi: 10.1016/j.pt.2016.01.006 26847654

17. Ghayour Najafabadi Z, Oormazdi H, Akhlaghi L, Meamar AR, Nateghpour M, Farivar L, et al. Detection of Plasmodium vivax and Plasmodium falciparum DNA in human saliva and urine: loop-mediated isothermal amplification for malaria diagnosis. Acta Trop. 2014;136:44–9. Epub 2014/04/12. doi: 10.1016/j.actatropica.2014.03.029 24721227.

18. Ghayour Najafabadi Z, Oormazdi H, Akhlaghi L, Meamar AR, Raeisi A, Rampisheh Z, et al. Mitochondrial PCR-based malaria detection in saliva and urine of symptomatic patients. Trans R Soc Trop Med Hyg. 2014;108(6):358–62. Epub 2014/04/29. doi: 10.1093/trstmh/tru061 24771503.

19. Haque R, Kabir M, Noor Z, Rahman SM, Mondal D, Alam F, et al. Diagnosis of amebic liver abscess and amebic colitis by detection of Entamoeba histolytica DNA in blood, urine, and saliva by a real-time PCR assay. J Clin Microbiol. 2010;48(8):2798–801. Epub 2010/06/11. doi: 10.1128/JCM.00152-10 20534800; PubMed Central PMCID: PMC2916621.

20. Arshadi M, Akhlaghi L, Meamar AR, Alizadeh Ghavidel L, Nasiri K, Mahami-Oskouei M, et al. Sero-molecular detection, multi-locus genotyping, and clinical manifestations of ocular toxoplasmosis in patients in northwest Iran. Trans R Soc Trop Med Hyg. 2019;113(4):195–202. Epub 2019/01/10. doi: 10.1093/trstmh/try137 30624725.

21. Fuentes I, Rodriguez M, Domingo CJ, del Castillo F, Juncosa T, Alvar J. Urine sample used for congenital toxoplasmosis diagnosis by PCR. J Clin Microbiol. 1996;34(10):2368–71. Epub 1996/10/01. 8880481; PubMed Central PMCID: PMC229271.

22. Wichmann D, Panning M, Quack T, Kramme S, Burchard G-D, Grevelding C, et al. Diagnosing Schistosomiasis by detection of cell-free parasite DNA in human plasma. PLoS Negl Trop Dis. 2009;3(4):e422. doi: 10.1371/journal.pntd.0000422 19381285

23. Kato-Hayashi N, Yasuda M, Yuasa J, Isaka S, Haruki K, Ohmae H, et al. Use of cell-free circulating schistosome DNA in serum, urine, semen, and saliva to monitor a case of refractory imported schistosomiasis hematobia. J Clin Microbiol. 2013;51(10):3435–8. Epub 2013/07/26. doi: 10.1128/JCM.01219-13 23884992; PubMed Central PMCID: PMC3811636.

24. Weerakoon KG, Gordon CA, Williams GM, Cai P, Gobert GN, Olveda RM, et al. Droplet digital PCR diagnosis of human schistosomiasis: parasite cell-free DNA detection in diverse clinical samples. J Infect Dis. 2017;216(12):1611–22. doi: 10.1093/infdis/jix521 29029307

25. Gorgani-Firouzjaee T, Kalantari N, Javanian M, Ghaffari S. Strongyloides stercoralis: detection of parasite-derived DNA in serum samples obtained from immunosuppressed patients. Parasitol Res. 2018;117(9):2927–32. Epub 2018/07/07. doi: 10.1007/s00436-018-5985-5 29978421.

26. Rostami S, Torbaghan SS, Dabiri S, Babaei Z, Mohammadi MA, Sharbatkhori M, et al. Genetic characterization of Echinococcus granulosus from a large number of formalin-fixed, paraffin-embedded tissue samples of human isolates in Iran. Am J Trop Med Hyg. 2015;92(3):588–94. doi: 10.4269/ajtmh.14-0585 25535316

27. Schneider R, Gollackner B, Edel B, Schmid K, Wrba F, Tucek G, et al. Development of a new PCR protocol for the detection of species and genotypes (strains) of Echinococcus in formalin-fixed, paraffin-embedded tissues. Int J Parasitol. 2008;38(8–9):1065–71. doi: 10.1016/j.ijpara.2007.11.008 18177654

28. Alvarez Rojas CA, Romig T, Lightowlers MW. Echinococcus granulosus sensu lato genotypes infecting humans–review of current knowledge. Int J Parasitol. 2014;44(1):9–18. doi: 10.1016/j.ijpara.2013.08.008 24269720

29. Jafari R, Sanei B, Baradaran A, Spotin A, Bagherpour B, Darani HY. Genetic characterization of Echinococcus granulosus strains isolated from humans based on nad1 and cox1 gene analysis in Isfahan, central Iran. J Helminthol. 2018;92(6):696–702. doi: 10.1017/S0022149X17000967 29103387

30. Kinkar L, Laurimäe T, Acosta-Jamett G, Andresiuk V, Balkaya I, Casulli A, et al. Distinguishing Echinococcus granulosus sensu stricto genotypes G1 and G3 with confidence: A practical guide. Infect Genet Evol. 2018;(64):178–84. https://doi.org/10.1016/j.meegid.2018.06.026.

31. Nikmanesh B, Mirhendi H, Mahmoudi S, Rokni MB. Multilocus sequence analysis of Echinococcus granulosus strains isolated from humans and animals in Iran. Exp Parasitol. 2017;183:50–5. doi: 10.1016/j.exppara.2017.10.002 29024693

32. Pezeshki A, Akhlaghi L, Sharbatkhori M, Razmjou E, Oormazdi H, Mohebali M, et al. Genotyping of Echinococcus granulosus from domestic animals and humans from Ardabil Province, northwest Iran. J Helminthol. 2013;87(4):387–91. doi: 10.1017/S0022149X1200051X 23046636

33. Farhadi M, Fazaeli A, Haniloo A. Genetic characterization of livestock and human hydatid cyst isolates from northwest Iran, using the mitochondrial cox1 gene sequence. Parasitol Res. 2015;114(12):4363–70. Epub 2015/08/19. doi: 10.1007/s00436-015-4673-y 26280086.

34. Spotin A, Mahami-Oskouei M, Harandi MF, Baratchian M, Bordbar A, Ahmadpour E, et al. Genetic variability of Echinococcus granulosus complex in various geographical populations of Iran inferred by mitochondrial DNA sequences. Acta trop. 2017;165:10–6. doi: 10.1016/j.actatropica.2016.03.002 26948902

35. Kinkar L, Laurimäe T, Acosta-Jamett G, Andresiuk V, Balkaya I, Casulli A, et al. Global phylogeography and genetic diversity of the zoonotic tapeworm Echinococcus granulosus sensu stricto genotype G1. Int J Parasitol. 2018;48(9):729–42.https://doi.org/10.1016/j.ijpara.2018.03.006.

36. Romig T, Ebi D, Wassermann M. Taxonomy and molecular epidemiology of Echinococcus granulosus sensu lato. Vet Parasitol. 2015;213(3–4):76–84. doi: 10.1016/j.vetpar.2015.07.035 26264250

37. Romig T, Deplazes P, Jenkins D, Giraudoux P, Massolo A, Craig PS, et al. Chapter Five—Ecology and life cycle patterns of Echinococcus species. In: Thompson RCA, Deplazes P, Lymbery AJ, editors. Adv Parasitol. 95: Academic Press; 2017. p. 213–314.

38. Kinkar L, Laurimäe T, Balkaya I, Casulli A, Zait H, Irshadullah M, et al. Genetic diversity and phylogeography of the elusive, but epidemiologically important Echinococcus granulosus sensu stricto genotype G3. Parasitology. 2018;145(12):1613–22. Epub 04/17. doi: 10.1017/S0031182018000549 29661261

39. Casulli A, Interisano M, Sreter T, Chitimia L, Kirkova Z, La Rosa G, et al. Genetic variability of Echinococcus granulosus sensu stricto in Europe inferred by mitochondrial DNA sequences. Infect Genet Evol. 2012;12(2):377–83. doi: 10.1016/j.meegid.2011.12.014 22240082

40. Guo ZH, Kubo M, Kudo M, Nibe K, Horii Y, Nonaka N. Growth and genotypes of Echinococcus granulosus found in cattle imported from Australia and fattened in Japan. Parasitol Int. 2011;60(4):498–502. doi: 10.1016/j.parint.2011.09.002 21930239

41. Hosseini-Safa A, Mohag Hegh MA, Pestechian N, Ganji M, Mohammadi R, Mahmoudi Lamouki R, et al. First report of Tasmanian sheep strain (G2) genotype isolated from Iranian goat using the high resolution melting (HRM) analysis. Gastroenterol Hepatol Bed Bench. 2016;9(Suppl1):S70–S4. Epub 2017/02/23. 28224031; PubMed Central PMCID: PMC5310803.

42. Parsa F, Fasihi Harandi M, Rostami S, Sharbatkhori M. Genotyping Echinococcus granulosus from dogs from Western Iran. Exp Parasitol. 2012;132(2):308–12. doi: 10.1016/j.exppara.2012.07.010 22884512

43. Sharbatkhori M, Tanzifi A, Rostami S, Rostami M, Harandi MF. Echinococcus granulosus sensu lato genotypes in domestic livestock and humans in Golestan province, Iran. Rev Inst Med Trop Sao Paulo. 2016;58:38. doi: 10.1590/S1678-9946201658038 27253740

44. Kinkar L, Laurimäe T, Sharbatkhori M, Mirhendi H, Kia EB, Ponce-Gordo F, et al. New mitogenome and nuclear evidence on the phylogeny and taxonomy of the highly zoonotic tapeworm Echinococcus granulosus sensu stricto. Infect Genet Evol. 2017;52:52–8. doi: 10.1016/j.meegid.2017.04.023 28456662

45. Laurimäe T, Kinkar L, Romig T, Omer RA, Casulli A, Umhang G, et al. The benefits of analysing complete mitochondrial genomes: Deep insights into the phylogeny and population structure of Echinococcus granulosus sensu lato genotypes G6 and G7. Infect Genet Evol. 2018;64:85–94. doi: 10.1016/j.meegid.2018.06.016 29906638

46. Karamian M, Haghighi F, Hemmati M, Taylor WR, Salehabadi A, Ghatee MA. Heterogenity of Echinococcus canadensis genotype 6− the main causative agent of cystic echinococcosis in Birjand, Eastern Iran. Vet Parasitol. 2017;245:78–85. doi: 10.1016/j.vetpar.2017.08.018 28969842


Článek vyšel v časopise

PLOS One


2019 Číslo 10