Architecture of population-differentiated polymorphisms in the human genome


Autoři: Maulana Bachtiar aff001;  Yu Jin aff002;  Jingbo Wang aff001;  Tin Wee Tan aff001;  Samuel S. Chong aff004;  Kenneth H. K. Ban aff001;  Caroline G. L. Lee aff001
Působiště autorů: Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore aff001;  Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore aff002;  National Supercomputing Centre Singapore, Singapore aff003;  Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore aff004;  Cancer & Stem Cell Biology Programme, Duke-NUS Graduate Medical School, Singapore aff005
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224089

Souhrn

Population variation in disease and other phenotype are partly attributed to single nucleotide polymorphisms (SNPs) in the human genome. Due to selection pressure, two individuals from the same ancestral population have more genetic similarity compared to individuals from further geographic regions. Here, we elucidated the genomic population differentiation pattern, by interrogating >22,000,000 SNPs. Majority of population-differentiated (pd) SNPs (~95%), including the potentially functional (pf) (~84%) subset reside in non-genic regions, compared to the proportion of all SNPs (58%) found in non-genic regions. This suggests that differences between populations are more likely due to differences in gene regulation rather than protein function. Actin Cytoskeleton, Axonal Guidance and Protein Kinase A signaling pathways are enriched with genes carrying at least three pdSNPs (enriched pdGenes), while Antigen Presentation, Hepatic Fibrosis and Huntington Disease Signalling pathways are over-represented by enriched pf-pdGenes. An inverse correlation between chromosome size and the proportion of pd-/pf-pdSNPs was observed. Smaller chromosomes have relatively more of such SNPs including genes carrying these SNPs. Genes associated with common diseases and enriched with these pd-/pfpdSNPs are localized to 11 different chromosomes, with immune-related disease pd/pf-pdGenes mainly residing in chromosome 6 while neurological disease pd/pf-pdGenes residing in smaller chromosomes including chromosome 21/22. The associated diseases were reported to show population differences in incidence, severity and/or etiology. In summary, this study highlights the non-sporadic nature of population differentiation footprint in the human genome, which can potentially lead to the identification of genomic regions that play roles in the manifestation of phenotypic differences, including in disease predisposition and drug response.

Klíčová slova:

Comparative genomics – Europe – Gene regulation – Chromosome structure and function – Chromosomes – Population genetics – Structural genomics – Human genomics


Zdroje

1. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308–11. doi: 10.1093/nar/29.1.308 11125122

2. Bamshad M, Wooding SP. Signatures of natural selection in the human genome. Nat Rev Genet. 2003;4(2):99–111. doi: 10.1038/nrg999 12560807

3. Barreiro LB, Laval G, Quach H, Patin E, Quintana-Murci L. Natural selection has driven population differentiation in modern humans. Nat Genet. 2008;40(3):340–5. doi: 10.1038/ng.78 18246066

4. Nielsen R. Molecular signatures of natural selection. Annu Rev Genet. 2005;39:197–218. doi: 10.1146/annurev.genet.39.073003.112420 16285858

5. Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, Lee MT, et al. Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood. 2010;115(18):3827–34. doi: 10.1182/blood-2009-12-255992 20203262

6. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;Chapter 7:Unit7 20.

7. Wolf SJ, Bachtiar M, Wang J, Sim TS, Chong SS, Lee CG. An update on ABCB1 pharmacogenetics: insights from a 3D model into the location and evolutionary conservation of residues corresponding to SNPs associated with drug pharmacokinetics. Pharmacogenomics J. 2011;11(5):315–25. doi: 10.1038/tpj.2011.16 21625253

8. Fairbrother WG, Yeh RF, Sharp PA, Burge CB. Predictive identification of exonic splicing enhancers in human genes. Science. 2002;297(5583):1007–13. doi: 10.1126/science.1073774 12114529

9. Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic acids research. 2003;31(1):374–8. doi: 10.1093/nar/gkg108 12520026

10. Genomes Project C, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061–73. doi: 10.1038/nature09534 20981092

11. Weir BS, Cockerham CC. Estimating F-Statistics for the Analysis of Population Structure. Evolution. 1984;38(6):1358–70. doi: 10.1111/j.1558-5646.1984.tb05657.x 28563791

12. Holsinger KE, Weir BS. Genetics in geographically structured populations: defining, estimating and interpreting F(ST). Nature reviews Genetics. 2009;10(9):639–50. doi: 10.1038/nrg2611 19687804

13. Wang J, Ronaghi M, Chong SS, Lee CG. pfSNP: An integrated potentially functional SNP resource that facilitates hypotheses generation through knowledge syntheses. Hum Mutat. 2011;32(1):19–24. doi: 10.1002/humu.21331 20672376

14. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75. doi: 10.1086/519795 17701901

15. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7. doi: 10.1089/omi.2011.0118 22455463

16. Yu G, Wang LG, Yan GR, He QY. DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics. 2015;31(4):608–9. doi: 10.1093/bioinformatics/btu684 25677125

17. Khoshnood B, Pryde P, Wall S, Singh J, Mittendorf R, Lee KS. Ethnic differences in the impact of advanced maternal age on birth prevalence of Down syndrome. Am J Public Health. 2000;90(11):1778–81. doi: 10.2105/ajph.90.11.1778 11076250

18. Czaja AJ. Autoimmune hepatitis in diverse ethnic populations and geographical regions. Expert Rev Gastroenterol Hepatol. 2013;7(4):365–85. doi: 10.1586/egh.13.21 23639095

19. Karvonen M, Viik-Kajander M, Moltchanova E, Libman I, LaPorte R, Tuomilehto J. Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group. Diabetes Care. 2000;23(10):1516–26. doi: 10.2337/diacare.23.10.1516 11023146

20. Cooper GS, Stroehla BC. The epidemiology of autoimmune diseases. Autoimmun Rev. 2003;2(3):119–25. 12848952

21. Gonzalez LA, Toloza SM, Alarcon GS. Impact of race and ethnicity in the course and outcome of systemic lupus erythematosus. Rheum Dis Clin North Am. 2014;40(3):433–54, vii-viii. doi: 10.1016/j.rdc.2014.04.001 25034155

22. Kraut-Becher J, Eisenberg M, Voytek C, Brown T, Metzger DS, Aral S. Examining racial disparities in HIV: lessons from sexually transmitted infections research. J Acquir Immune Defic Syndr. 2008;47 Suppl 1:S20–7.

23. McCarty DJ, Manzi S, Medsger TA Jr., Ramsey-Goldman R, LaPorte RE, Kwoh CK. Incidence of systemic lupus erythematosus. Race and gender differences. Arthritis Rheum. 1995;38(9):1260–70. doi: 10.1002/art.1780380914 7575721

24. Kandasami P, Harunarashid H, Kaur H. Acute pancreatitis in a multi-ethnic population. Singapore medical journal. 2002;43(6):284–8. 12380724

25. Hart PH, Grimbaldeston MA, Finlay-Jones JJ. Sunlight, immunosuppression and skin cancer: role of histamine and mast cells. Clin Exp Pharmacol Physiol. 2001;28(1–2):1–8. doi: 10.1046/j.1440-1681.2001.03392.x 11153522

26. Bradford PT. Skin cancer in skin of color. Dermatol Nurs. 2009;21(4):170–7, 206; quiz 178. 19691228

27. Brown MJ. Hypertension and ethnic group. BMJ. 2006;332(7545):833–6. doi: 10.1136/bmj.332.7545.833 16601044

28. Piram M, Maldini C, Mahr A. Effect of race/ethnicity on risk, presentation and course of connective tissue diseases and primary systemic vasculitides. Current opinion in rheumatology. 2012;24(2):193–200. doi: 10.1097/BOR.0b013e32835059e5 22249352

29. Kim BJ, Kim JS. Ischemic stroke subtype classification: an asian viewpoint. Journal of stroke. 2014;16(1):8–17. doi: 10.5853/jos.2014.16.1.8 24741560

30. Rebbeck TR, Haas GP. Temporal trends and racial disparities in global prostate cancer prevalence. The Canadian journal of urology. 2014;21(5):7496–506. 25347377

31. Jensen-Seaman MI, Furey TS, Payseur BA, Lu Y, Roskin KM, Chen CF, et al. Comparative recombination rates in the rat, mouse, and human genomes. Genome research. 2004;14(4):528–38. doi: 10.1101/gr.1970304 15059993

32. Barreiro LB, Laval G, Quach H, Patin E, Quintana-Murci L. Natural selection has driven population differentiation in modern humans. Nat Genet. 2008;40(3):340–5. doi: 10.1038/ng.78 18246066

33. Satija R, Shalek AK. Heterogeneity in immune responses: from populations to single cells. Trends in immunology. 2014;35(5):219–29. doi: 10.1016/j.it.2014.03.004 24746883


Článek vyšel v časopise

PLOS One


2019 Číslo 10