Rapid and structure-specific cellular uptake of selected steroids

Autoři: Jeffrey M. McManus aff001;  Kelsey Bohn aff001;  Mohammad Alyamani aff001;  Yoon-Mi Chung aff001;  Eric A. Klein aff002;  Nima Sharifi aff001
Působiště autorů: Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America aff001;  Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, United States of America aff002;  Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224081


Steroid hormones and their respective nuclear receptors are essential mediators in numerous physiologic and pathophysiologic processes, ranging from regulation of metabolism, immune function, and reproductive processes to the development of hormone-dependent cancers such as those of the breast and prostate. Because steroids must enter cells before activating nuclear receptors, understanding the mechanisms by which cellular uptake occurs is critical, yet a clear understanding of these mechanisms has been elusive. It is generally assumed that diffusion-driven uptake is similar across various steroids whereas an elevated cellular concentration is thought to reflect active uptake, but these assumptions have not been directly tested. Here we show that intact cells rapidly accumulate free steroids to markedly elevated concentrations. This effect varies widely depending on steroid structure; more lipophilic steroids reach more elevated concentrations. Strong preferences exist for 3β-OH, Δ5-steroids vs. 3-keto, Δ4-structural features and for progestogens vs. androgens. Surprisingly, steroid-structure-specific preferences do not require cell viability, implying a passive mechanism, and occur across cells derived from multiple tissue types. Physiologic relevance is suggested by structure-specific preferences in human prostate tissue compared with serum. On the other hand, the presence of serum proteins in vitro blocks much, but not all, of the passive accumulation, while still permitting a substantial amount of active accumulation for certain steroids. Our findings suggest that both passive and active uptake mechanisms make important contributions to the cellular steroid uptake process. The role of passive, lipophilicity-driven accumulation has previously been largely unappreciated, and its existence provides important context to studies on steroid transport and action both in vitro and in vivo.

Klíčová slova:

Cell membranes – Culture media – Progesterone – Prostate cancer – Prostate gland – Serum proteins – Steroids – Testosterone


1. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32(1):81–151. doi: 10.1210/er.2010-0013 21051590

2. Chang KH, Li R, Kuri B, Lotan Y, Roehrborn CG, Liu J, et al. A gain-of-function mutation in DHT synthesis in castration-resistant prostate cancer. Cell. 2013;154(5):1074–84. doi: 10.1016/j.cell.2013.07.029 23993097

3. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, et al. The Nuclear Receptor Superfamily—the 2nd Decade. Cell. 1995;83(6):835–9. doi: 10.1016/0092-8674(95)90199-x 8521507

4. Groner AC, Brown M. Role of steroid receptor and coregulator mutations in hormone-dependent cancers. J Clin Invest. 2017;127(4):1126–35. doi: 10.1172/JCI88885 28368289

5. Yuan X, Cai C, Chen S, Chen S, Yu Z, Balk SP. Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene. 2014;33(22):2815–25. doi: 10.1038/onc.2013.235 23752196

6. Sharifi N, Auchus RJ. Steroid biosynthesis and prostate cancer. Steroids. 2012;77(7):719–26. doi: 10.1016/j.steroids.2012.03.015 22503713

7. Le TN, Nestler JE, Strauss JF, 3rd, Wickham EP, 3rd. Sex hormone-binding globulin and type 2 diabetes mellitus. Trends Endocrinol Metab. 2012;23(1):32–40. doi: 10.1016/j.tem.2011.09.005 22047952

8. Mendel CM. The Free Hormone Hypothesis—a Physiologically Based Mathematical-Model. Endocr Rev. 1989;10(3):232–74. doi: 10.1210/edrv-10-3-232 2673754

9. Mendel CM. The Free Hormone Hypothesis—Distinction from the Free Hormone Transport Hypothesis. J Androl. 1992;13(2):107–16. 1597394

10. Pardridge WM. Selective delivery of sex steroid hormones to tissues in vivo by albumin and by sex hormone-binding globulin. Ann N Y Acad Sci. 1988;538:173–92. doi: 10.1111/j.1749-6632.1988.tb48863.x 3056185

11. Pressler H, Sissung TM, Venzon D, Price DK, Figg WD. Expression of OATP family members in hormone-related cancers: potential markers of progression. PLoS One. 2011;6(5):e20372. doi: 10.1371/journal.pone.0020372 21625523

12. Gorski J, Gannon F. Current models of steroid hormone action: a critique. Annual review of physiology. 1976;38:425–50. doi: 10.1146/annurev.ph.38.030176.002233 176920

13. Rao GS. Mode of entry of steroid and thyroid hormones into cells. Mol Cell Endocrinol. 1981;21(2):97–108. doi: 10.1016/0303-7207(81)90047-2 7011885

14. Carroll JS, Hickey TE, Tarulli GA, Williams M, Tilley WD. Deciphering the divergent roles of progestogens in breast cancer. Nat Rev Cancer. 2017;17(1):54–64. doi: 10.1038/nrc.2016.116 27885264

15. Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 2015;15(12):701–11. doi: 10.1038/nrc4016 26563462

16. Okamoto N, Viswanatha R, Bittar R, Li ZC, Haga-Yamanaka S, Perrimon N, et al. A Membrane Transporter Is Required for Steroid Hormone Uptake in Drosophila. Dev Cell. 2018;47(3):294–+. doi: 10.1016/j.devcel.2018.09.012 30293839

17. Yamanaka N, Marqués G, O'Connor MB. Vesicle-Mediated Steroid Hormone Secretion in Drosophila melanogaster. Cell. 2015;163(4):907–19. doi: 10.1016/j.cell.2015.10.022 26544939

18. Fent K. Progestins as endocrine disrupters in aquatic ecosystems: Concentrations, effects and risk assessment. Environ Int. 2015;84:115–30. doi: 10.1016/j.envint.2015.06.012 26276056

19. Kumar V, Johnson AC, Trubiroha A, Tumova J, Ihara M, Grabic R, et al. The Challenge Presented by Progestins in Ecotoxicological Research: A Critical Review. Environmental Science & Technology. 2015;49(5):2625–38.

20. Liu S, Xu XR, Qi ZH, Chen H, Hao QW, Hu YX, et al. Steroid bioaccumulation profiles in typical freshwater aquaculture environments of South China and their human health risks via fish consumption. Environ Pollut. 2017;228:72–81. doi: 10.1016/j.envpol.2017.05.031 28525786

21. Sato T, Sato N, Takahashi S, Koshiba H, Kikuchi K. Specific Cytotoxicity of a Long-Term Cultured T-Cell Clone on Human Autologous Mammary Cancer Cells. Cancer Res. 1986;46(9):4384–9. 3488124

22. Arakawa H, Nakanishi T, Yanagihara C, Nishimoto T, Wakayama T, Mizokami A, et al. Enhanced expression of organic anion transporting polypeptides (OATPs) in androgen receptor-positive prostate cancer cells: Possible role of OATP1A2 in adaptive cell growth under androgen-depleted conditions. Biochem Pharmacol. 2012;84(8):1070–7. doi: 10.1016/j.bcp.2012.07.026 22864060

23. Patten R. Procedure for separating nuclear, membrane and cytoplasmic cell fractions using centrifugation methods [Available from: https://www.abcam.com/protocols/subcellular-fractionation-protocol.

24. Yu Z, Huang Z, Lung ML. Subcellular Fractionation of Cultured Human Cell Lines. Bio-protocol. 2013;3(9):e754.

25. Briggs GG. Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water solubilities, bioconcentration factors, and the parachor. Journal of Agricultural and Food Chemistry. 1981;29(5):1050–9.

26. Ebrahimi A, Csonka LN, Alam MA. Analyzing Thermal Stability of Cell Membrane of Salmonella Using Time-Multiplexed Impedance Sensing. Biophysical journal. 2018;114(3):609–18. doi: 10.1016/j.bpj.2017.10.032 29414707

27. Dill KA, Shortle D. DENATURED STATES OF PROTEINS. Annual Review of Biochemistry. 1991;60(1):795–825.

28. Parsons TK, Pratt RN, Tang L, Wu Y. An active and selective molecular mechanism mediating the uptake of sex steroids by prostate cancer cells. Mol Cell Endocrinol. 2018.


30. Leszczynski DE, Schafer RM. Nonspecific and metabolic interactions between steroid hormones and human plasma lipoproteins. Lipids. 1990;25(11):711–8. doi: 10.1007/bf02544039 2280675

31. Cheng T, Zhao Y, Li X, Lin F, Xu Y, Zhang X, et al. Computation of Octanol−Water Partition Coefficients by Guiding an Additive Model with Knowledge. Journal of Chemical Information and Modeling. 2007;47(6):2140–8. doi: 10.1021/ci700257y 17985865

32. Dunn JF, Nisula BC, Rodbard D. Transport of Steroid-Hormones—Binding of 21 Endogenous Steroids to Both Testosterone-Binding Globulin and Corticosteroid-Binding Globulin in Human-Plasma. J Clin Endocr Metab. 1981;53(1):58–68. doi: 10.1210/jcem-53-1-58 7195404

33. Wu Y, Godoy A, Azzouni F, Wilton JH, Ip C, Mohler JL. Prostate cancer cells differ in testosterone accumulation, dihydrotestosterone conversion, and androgen receptor signaling response to steroid 5 alpha-reductase inhibitors. Prostate. 2013;73(13):1470–82. doi: 10.1002/pros.22694 23813697

34. Larionov AA, Berstein LM, Miller WR. Local uptake and synthesis of oestrone in normal and malignant postmenopausal breast tissues. J Steroid Biochem. 2002;81(1):57–64.

35. Schwarz TI, Katsiadaki I, Maskrey BH, Scott AP. Rapid uptake, biotransformation, esterification and lack of depuration of testosterone and its metabolites by the common mussel, Mytilus spp. J Steroid Biochem. 2017;171:54–65.

36. Schwarz TI, Katsiadaki I, Maskrey BH, Scott AP. Mussels (Mytilus spp.) display an ability for rapid and high capacity uptake of the vertebrate steroid, estradiol-17 beta from water. J Steroid Biochem. 2017;165:407–20.

37. Gregory CW, He B, Johnson RT, Ford OH, Mohler JL, French FS, et al. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res. 2001;61(11):4315–9. 11389051

38. Chen EJ, Sowalsky AG, Gao S, Cai C, Voznesensky O, Schaefer R, et al. Abiraterone treatment in castration-resistant prostate cancer selects for progesterone responsive mutant androgen receptors. Clin Cancer Res. 2015;21(6):1273–80. doi: 10.1158/1078-0432.CCR-14-1220 25320358

39. Neuzillet Y, Raynaud JP, Radulescu C, Fiet J, Giton F, Dreyfus JF, et al. Sexual steroids in serum and prostatic tissue of human non-cancerous prostate (STERPROSER trial). Prostate. 2017;77(15):1512–9. doi: 10.1002/pros.23429 28905453

40. Knuuttila M, Mehmood A, Maki-Jouppila J, Ryberg H, Taimen P, Knaapila J, et al. Intratumoral androgen levels are linked to TMPRSS2-ERG fusion in prostate cancer. Endocrine-related cancer. 2018;25(9):807–19. doi: 10.1530/ERC-18-0148 29773553

41. Steers WD. 5α-reductase activity in the prostate. Urology. 2001;58(6, Supplement 1):17–24.

42. Huhtinen K, Saloniemi-Heinonen T, Keski-Rahkonen P, Desai R, Laajala D, Stahle M, et al. Intra-tissue steroid profiling indicates differential progesterone and testosterone metabolism in the endometrium and endometriosis lesions. The Journal of clinical endocrinology and metabolism. 2014;99(11):E2188–97. doi: 10.1210/jc.2014-1913 25137424

43. Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr Rev. 2015;36(5):526–63. doi: 10.1210/er.2015-1036 26213785

44. Mendel CM, Weisiger RA, Jones AL, Cavalieri RR. Thyroid hormone-binding proteins in plasma facilitate uniform distribution of thyroxine within tissues: a perfused rat liver study. Endocrinology. 1987;120(5):1742–9. doi: 10.1210/endo-120-5-1742 3106010

45. Veldscholte J, Risstalpers C, Kuiper GGJM, Jenster G, Berrevoets C, Claassen E, et al. A Mutation in the Ligand-Binding Domain of the Androgen Receptor of Human Lncap Cells Affects Steroid Binding Characteristics and Response to Anti-Androgens. Biochem Bioph Res Co. 1990;173(2):534–40.

46. Grigoryev DN, Long BJ, Njar VCO, Brodie AHM. Pregnenolone stimulates LNCaP prostate cancer cell growth via the mutated androgen receptor. J Steroid Biochem. 2000;75(1):1–10.

47. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):1215–28. doi: 10.1016/j.cell.2015.05.001 26000489

48. Grindstad T, Richardsen E, Andersen S, Skjefstad K, Khanehkenari MR, Donnem T, et al. Progesterone Receptors in Prostate Cancer: Progesterone receptor B is the isoform associated with disease progression. Scientific Reports. 2018;8. doi: 10.1038/s41598-017-18329-3

49. Yang J, Li HY, Ran Y, Chan KM. Distribution and bioconcentration of endocrine disrupting chemicals in surface water and fish bile of the Pearl River Delta, South China. Chemosphere. 2014;107:439–46. doi: 10.1016/j.chemosphere.2014.01.048 24582358

50. Steele WB, Garcia SN, Huggett DB, Venables BJ, Barnes SE, La Point TW. Tissue-specific bioconcentration of the synthetic steroid hormone medroxyprogesterone acetate in the common carp (Cyprinus carpio). Environ Toxicol Phar. 2013;36(3):1120–6.

51. Hamasaki M, Matsumura S, Satou A, Takahashi C, Oda Y, Higashiura C, et al. Pregnenolone Functions in Centriole Cohesion during Mitosis. Chem Biol. 2014;21(12):1707–21. doi: 10.1016/j.chembiol.2014.11.005 25525990

52. Chisari M, Eisenman LN, Krishnan K, Bandyopadhyaya AK, Wang CD, Taylor A, et al. The Influence of Neuroactive Steroid Lipophilicity on GABA(A) Receptor Modulation: Evidence for a Low-Affinity Interaction. J Neurophysiol. 2009;102(2):1254–64. doi: 10.1152/jn.00346.2009 19553485

53. Voeltz GK, Rolls MM, Rapoport TA. Structural organization of the endoplasmic reticulum. EMBO Rep. 2002;3(10):944–50. doi: 10.1093/embo-reports/kvf202 12370207

54. Faassen F, Kelder J, Lenders J, Onderwater R, Vromans H. Physicochemical properties and transport of steroids across Caco-2 cells. Pharmaceutical Research. 2003;20(2):177–86. doi: 10.1023/a:1022210801734 12636155

55. Kaipainen A, Zhang A, Gil da Costa RM, Lucas J, Marck B, Matsumoto AM, et al. Testosterone accumulation in prostate cancer cells is enhanced by facilitated diffusion. Prostate. 2019;79(13):1530–42. doi: 10.1002/pros.23874 31376206

56. Hammes A, Andreassen TK, Spoelgen R, Raila J, Hubner N, Schulz H, et al. Role of endocytosis in cellular uptake of sex steroids. Cell. 2005;122(5):751–62. doi: 10.1016/j.cell.2005.06.032 16143106

57. Lackner C, Daufeldt S, Wildt L, Allera A. Glucocorticoid-recognizing and -effector sites in rat liver plasma membrane. Kinetics of corticosterone uptake by isolated membrane vesicles. III. Specificity and stereospecificity. The Journal of steroid biochemistry and molecular biology. 1998;64(1–2):69–82. doi: 10.1016/s0960-0760(97)00141-6 9569012

Článek vyšel v časopise


2019 Číslo 10