Cows painted with zebra-like striping can avoid biting fly attack

Autoři: Tomoki Kojima aff001;  Kazato Oishi aff002;  Yasushi Matsubara aff001;  Yuki Uchiyama aff001;  Yoshihiko Fukushima aff001;  Naoto Aoki aff001;  Say Sato aff001;  Tatsuaki Masuda aff001;  Junichi Ueda aff001;  Hiroyuki Hirooka aff002;  Katsutoshi Kino aff001
Působiště autorů: Animal Husbandry Division, Aichi Agricultural Research Center, Nagakute, Aichi, Japan aff001;  Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan aff002;  Aichi Veterinary Association, Nagoya, Aichi, Japan aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223447


Experimental and comparative studies suggest that the striped coats of zebras can prevent biting fly attacks. Biting flies are serious pests of livestock that cause economic losses in animal production. We hypothesized that cows painted with black and white stripes on their body could avoid biting fly attacks and show fewer fly-repelling behaviors. Six Japanese Black cows were assigned to treatments using a 3 × 3 Latin-square design. The treatments were black-and-white painted stripes, black painted stripes, and no stripes (all-black body surface). Recorded fly-repelling behaviors were head throw, ear beat, leg stamp, skin twitch, and tail flick. Photo images of the right side of each cow were taken using a commercial digital camera after every observation and biting flies on the body and each leg were counted from the photo images. Here we show that the numbers of biting flies on Japanese Black cows painted with black-and-white stripes were significantly lower than those on non-painted cows and cows painted only with black stripes. The frequencies of fly-repelling behaviors in cows painted with black-and-white stripes were also lower than those in the non-painted and black-striped cows. These results thus suggest that painting black-and-white stripes on livestock such as cattle can prevent biting fly attacks and provide an alternative method of defending livestock against biting flies without using pesticides in animal production, thereby proposing a solution for the problem of pesticide resistance in the environment.

Klíčová slova:

Cattle – Ears – Horses – Livestock – Pesticides – Zebras – Pest control – Animal production


1. Caro T. Zebra stripes. Chicago: University of Chicago Press; 2016.

2. Caro T, Izzo A, Reiner RC, Walker H, Stankowich T. The function of zebra stripes. Nat Commun. 2014; 5: 3535. doi: 10.1038/ncomms4535 24691390

3. Egri Á, Blahó M, Kriska G, Farkas R, Gyurkovszky M, Åkesson S, et al. Polarotactic tabanids find striped patterns with brightness and/or polarization modulation least attractive: an advantage of zebra stripes. J Exp Biol. 2012; 215: 736–745. doi: 10.1242/jeb.065540 22323196

4. Caro T, Argueta Y, Briolat ES, Bruggink J, Kasprowsky M, Lake J, et al. Benefits of zebra stripes: Behaviour of tabanid flies around zebras and horses. PLoS ONE. 2019; 14(2): e0210831. doi: 10.1371/journal.pone.0210831 30785882

5. Melin AD, Kline DW, Hiramatsu C, Caro T. Zebra stripes through the eyes of their predators, zebras, and humans. PLoS ONE. 2016; 11: e0145679. doi: 10.1371/journal.pone.0145679 26799935

6. Hogan BG, Cuthill IC, Scott-Samuel NE. Dazzle camouflage, target tracking, and the confusion effect. Behav Ecol. 2016; 27: 1547–1551. doi: 10.1093/beheco/arw081 27656087

7. Hayward MW, Kerley GI. Prey preferences of the lion (Panthera leo). J Zool. 2005; 267: 309–322.

8. Larison B, Harrigan RJ, Thomassen HA, Rubenstein DI, Chan-Golston AM, Li E, et al. How the zebra got its stripes: a problem with too many solutions. Roy Soc Open Sci. 2015; 2: 140452.

9. Horváth G, Pereszlényi Á, Száz D, Barta A, Jánosi IM, Gerics B, et al. Experimental evidence that stripes do not cool zebras. Sci Rep. 2018; 8: 9351. doi: 10.1038/s41598-018-27637-1 29921931

10. Horváth G, Blahó M, Kriska G, Hegedüs R, Gerics B, Farkas R, et al. An unexpected advantage of whiteness in horses: the most horsefly-proof horse has a depolarizing white coat. Proc R Soc B. 2010; 277: 1643–1650. doi: 10.1098/rspb.2009.2202 20129982

11. Blahó M, Egri Á, Száz D, Kriska G, Åkesson S, Horváth G. Stripes disrupt odour attractiveness to biting horseflies: Battle between ammonia, CO2, and colour pattern for dominance in the sensory systems of host-seeking tabanids. Physiol Behav. 2013; 119: 168–174. doi: 10.1016/j.physbeh.2013.06.013 23810990

12. Blahó M, Kriska G, Hegedüs R, Åkesson S, Horváth G. Spottier targets are less attractive to tabanid flies: on the tabanid-repellency of spotty fur patterns. PLoS ONE. 2012; 7(8): e41138. doi: 10.1371/journal.pone.0041138 22876282

13. Lysyk TJ. Temperature and population density effects on feeding activity of Stomoxys calcitrans (Diptera: Muscidae) on cattle. J Med Entomol. 1995; 32: 508–514. doi: 10.1093/jmedent/32.4.508 7650712

14. Schofield S, Torr SJ. A comparison of the feeding behaviour of tsetse and stable flies. Med Vet Entomol. 2002; 16: 177–185. 12109712

15. Mullens BA, Lii KS, Mao Y, Meyer JA, Peterson NG, Szijj CE. Behavioural responses of dairy cattle to the stable fly, Stomoxys calcitrans, in an open field environment. Med Vet Entomol. 2006; 20: 122–137. doi: 10.1111/j.1365-2915.2006.00608.x 16608497

16. Byford RL, Craig ME, Crosby BL. A review of ectoparasites and their effect on cattle production. J Anim Sci. 1992; 70: 597–602. doi: 10.2527/1992.702597x 1347767

17. Campbell JB, Skoda SR, Berkebile DR, Boxler DJ, Thomas GD, Adams DC, et al. Effects of stable flies (Diptera: Muscidae) on weight gains of grazing yearling cattle. J Econ Entomol. 2001; 94: 780–783. doi: 10.1603/0022-0493-94.3.780 11425037

18. Taylor DB, Moon RD, Mark D. Economic Impact of Stable Flies (Diptera: Muscidae) on Dairy and Beef Cattle Production. J Med Entomol. 2012; 49: 198–209. doi: 10.1603/me10050 22308789

19. Eicher SD, Morrow-Tesch JL, Albright JL, Williams RE. Tail-docking alters fly numbers, fly-avoidance behaviors, and cleanliness, but not physiological measures. J Dairy Sci. 2001; 84: 1822–1828. doi: 10.3168/jds.S0022-0302(01)74621-8 11518306

20. Kaps M, Lamberson W. Biostatistics for animal science: an introductory text. 2nd ed. Oxfordshire: CABI Publishing; 2009.

21. Hayashi K, Ota M, Kato M, Chiba Y, Narita A. Seasonal and diurnal activities of biting insect attacking grazing cattle, with special reference to repellent-spraying. Jap J Zootech Sci. 1967; 38: 376–384.

22. Okumura T. The relationship of attacking fly abundance to behavioral response of grazing cattle. Jpn J Appl Entomol Zool. 1977; 21: 119–122.

23. Manda M, Urabe S, Yanagita K. On the seasonal and diurnal prevalence of biting insects in Iriki Livestock Farm. Bull Exp Farm Fac Agr Kagoshima Univ. 1982; 7: 1–10.

24. Kondo S, Yasue T, Sasaki H, Miyagi K, Okubo M, Asahida Y. Effect of pest-fly on grooming behavior of grazing cattle on pasture. Res Bull Livestock Farm Fac Agr Hokkaido Univ. 1993; 15: 37–46.

25. Oyarzún MP, Quiros A, Birkett MA. Insecticide resistance in the horn fly: alternative control strategies. Med Vet Entomol. 2008; 22: 188–202. doi: 10.1111/j.1365-2915.2008.00733.x 18816268

26. Palumbi AR. Humans as the world's greatest evolutionary force. Science. 2001; 293: 1786–1790. doi: 10.1126/science.293.5536.1786 11546863

27. Hogsette JA, Prichard DL, Ruff JP. Economic effects of Horn Fly (Diptera: Muscidae) populations on beef cattle exposed to three pesticide treatment regumes. J Econ Entomol. 1991; 84: 1270–1274. doi: 10.1093/jee/84.4.1270 1842800

28. Hooven NW Jr., Cow identification and recording systems. J Dairy Sci. 1978; 61: 1167–1180.

29. Silvy NJ, Lopez RR, Peterson MJ. Wildlife marking techniques. In: Braun CEeditor. Techniques for wildlife investigations and management 6th ed. Bethesda: The Wildlife Society; 2005. pp. 339–376.

30. Caja G, Ghirardi JJ, Hernández-Jover M, Garín D. Diversity of animal identification techniques: from 'fire age' to 'electronic age'. ICAR Technical Series. 2004; 9: 21–39.

31. Allan SA, Day JF, Edman JD. Visual ecology of biting flies. Ann Rev Entomol. 1987; 32: 297–316.

32. Gibson G, Torr SJ. Visual and olfactory responses of haematophagous Diptera to host stimuli. Med Vet Entomol. 1999; 13: 2–23. 10194745

33. Hribar LJ, LePrince DJ, Foil LD. Ammonia as an attractant for adult Hybomitra lasiophthalma (Diptera: Tabanidae). J Med Entomol. 1992; 29: 346–348. doi: 10.1093/jmedent/29.2.346 1495056

34. Moore TR, Slosser JE, Cocke J, Newton WH. Effect of trap design and color in evaluating activity of Tabanus abactor Philip in Texas rolling plains habitat. Southwest Entomol. 1996; 21: 1–11.

35. Roberts RH. Attractancy of two black decoys and CO2 to tabanids (Diptera: Tabanidae). Mosq News. 1977; 37:169–172.

36. Sasaki H. Comparison of capturing tabanid flies (Diptera: Tabanidae) by five different color traps in the fields. Appl Entomol Zool. 2001; 36:515–519.

37. Thompson PH. Collecting methods for Tabanidae (Diptera). Ann Entomol Soc Am. 1969; 62:50–57.

38. Thorsteinson AJ. The orientation behavior of horseflies and deerflies (Tabanidae: Diptera). I. The attractance of heat to tabanids. Entomol Exp Appl. 1958; 1:191–196.

39. Wilson BH, Tugwell NP, Burns EC. Attraction of tabanids to traps baited with dry-ice under field conditions in Louisiana. J Med Entomol. 1966; 3:148–149

40. Egri Á, Blahó M, Sándor A, Kriska G, Gyurkovszky M, Farkas R, et al. New kind of polarotaxis governed by degree of polarization: attraction of tabanid flies to differently polarizing host animals and water surfaces. Naturwissenschaften. 2012; 99 (5): 407–416. doi: 10.1007/s00114-012-0916-2 22580753

41. Horváth G, Szörényi T, Pereszlényi Á, Gerics B, Hegedüs R, Barta A, et al. Why do horseflies need polarization vision for host detection? Polarization helps tabanid flies to select sunlit dark host animals from the dark patches of the visual environment. R Soc Open Sci. 2017; 4: 170735. doi: 10.1098/rsos.170735 29291065

42. Waage JK. How the zebra got its stripes–biting flies as selective agents in the evolution of zebra colouration. J Entomol Soc South Afr. 1981; 44: 351–358.

43. Brady J, Shereni W. Landing responses of the tsetse fly Glossina morsitans morsitans Westwood and the stable fly Stomoxys calcitrans (L.) (Diptera: Glossinidae & Muscidae) to black-and-white patterns: a laboratory study. Bull Entomol Res. 1988; 78: 301–311.

44. Gibson G. Do tsetse flies ‘see’ zebras? A field study of the visual response of tsetse to striped targets. Physiol Entomol. 1992; 17: 141–147.

45. Horváth G, Majer J, Horváth L, Szivák I, Kriska G. Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light. Naturwissenschaften. 2008; 95 (11): 1093–1100. doi: 10.1007/s00114-008-0425-5 18685822

46. Kriska G, Bernáth B, Farkas R, Horváth G. Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae). J Insect Physiol. 2009; 55 (12): 1167–1173. doi: 10.1016/j.jinsphys.2009.08.013 19699746

47. Egri Á, Blahó M, Száz D, Barta A, Kriska G, Antoni G, et al. A new tabanid trap applying a modified concept of the old flypaper: Linearly polarising sticky black surfaces as an effective tool to catch polarotactic horseflies. Int J Parasitol. 2013; 43 (7): 555–563 doi: 10.1016/j.ijpara.2013.02.002 23500071

48. Horváth G, Szörényi T, Pereszlényi Á, Gerics B, Hegedüs R, Barta A, et al. Why do horseflies need polarization vision for host detection? Polarization helps tabanid flies to select sunlit dark host animals from the dark patches of the visual environment. R Soc Open Sci. 2017; 4: 170735. doi: 10.1098/rsos.170735 29291065

49. Horváth G, Pereszlényi Á, Akesson S, Kriska G. Striped bodypainting protects against horseflies. R Soc Open Sci. 2019; 6 (1): 181325. doi: 10.1098/rsos.181325 30800379

50. How MJ, Zanker JM. Motion camouflage induced by zebra stripes. Zoology. 2014; 117: 163–170. doi: 10.1016/j.zool.2013.10.004 24368147

Článek vyšel v časopise


2019 Číslo 10