HLA high-resolution typing by next-generation sequencing in Pandemrix-induced narcolepsy

Autoři: Alexander Lind aff001;  Omar Akel aff001;  Madeleine Wallenius aff001;  Anita Ramelius aff001;  Marlena Maziarz aff001;  Lue Ping Zhao aff002;  Daniel E. Geraghty aff002;  Lars Palm aff003;  Åke Lernmark aff001;  Helena Elding Larsson aff001
Působiště autorů: Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden aff001;  Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America aff002;  Section for Paediatric Neurology, Department of Paediatrics, Skåne University Hospital SUS, Malmö, Sweden aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222882


The incidence of narcolepsy type 1 (NT1) increased in Sweden following the 2009–2010 mass-vaccination with the influenza Pandemrix-vaccine. NT1 has been associated with Human leukocyte antigen (HLA) DQB1*06:02 but full high-resolution HLA-typing of all loci in vaccine-induced NT1 remains to be done. Therefore, here we performed HLA typing by sequencing HLA-DRB3, DRB4, DRB5, DRB1, DQA1, DQB1, DPA1 and DPB1 in 31 vaccine-associated NT1 patients and 66 of their first-degree relatives (FDR), and compared these data to 636 Swedish general population controls (GP). Previously reported disease-related alleles in the HLA-DRB5*01:01:01-DRB1*15:01:01-DQA1*01:02:01-DQB1*06:02:01 extended haplotype were increased in NT1 patients (34/62 haplotypes, 54.8%) compared to GP (194/1272 haplotypes, 15.3%, p = 6.17E-16). Indeed, this extended haplotype was found in 30/31 patients (96.8%) and 178/636 GP (28.0%). In total, 15 alleles, four extended haplotypes, and six genotypes were found to be increased or decreased in frequency among NT1 patients compared to GP. Among subjects with the HLA-DRB5*01:01:01-DRB1*15:01:01-DQA1*01:02-DQB1*06:02 haplotype, a second DRB4*01:03:01-DRB1*04:01:01-DQA1*03:02//*03:03:01-DQB1*03:01:01 haplotype (p = 2.02E-2), but not homozygosity for DRB1*15:01:01-DQB1*06:02:01 (p = 7.49E-1) conferred association to NT1. Alleles with increased frequency in DQA1*01:02:01 (p = 1.07E-2) and DQA1*03:02//*03:03:01 (p = 3.26E-2), as well as with decreased frequency in DRB3*01:01:02 (p = 8.09E-3), DRB1*03:01:01 (p = 1.40E-2), and DQB1*02:01:01 (p = 1.40E-2) were found among patients compared to their FDR. High-resolution HLA sequencing in Pandemrix-associated NT1 confirmed the strong association with the DQB1*06:02:01-containing haplotype but also revealed an increased association to the not previously reported extended HLA-DRB4*01:03:01-DRB1*04:01:01-DQA1*03:02//*03:03:01-DQB1*03:01:01 haplotype. High-resolution HLA typing should prove useful in dissecting the immunological mechanisms of vaccination-associated NT1.

Klíčová slova:

Genetics of disease – Haplotypes – Human genetics – Influenza – Sweden – Variant genotypes – Narcolepsy – Homozygosity


1. Scammell TE. Narcolepsy. New England Journal of Medicine. 2015;373(27):2654–62. doi: 10.1056/NEJMra1500587 26716917

2. Partinen M, Kornum BR, Plazzi G, Jennum P, Julkunen I, Vaarala O. Narcolepsy as an autoimmune disease: the role of H1N1 infection and vaccination. The Lancet Neurology. 2014;13(6):600–13. Epub 2014/05/23. doi: 10.1016/S1474-4422(14)70075-4 24849861.

3. Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27(3):469–74. Epub 2000/10/31. doi: 10.1016/s0896-6273(00)00058-1 11055430.

4. Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nature medicine. 2000;6(9):991–7. Epub 2000/09/06. doi: 10.1038/79690 10973318.

5. Tafti M, Hor H, Dauvilliers Y, Lammers GJ, Overeem S, Mayer G, et al. DQB1 Locus Alone Explains Most of the Risk and Protection in Narcolepsy with Cataplexy in Europe. Sleep. 2014;37(1):19–25. doi: 10.5665/sleep.3300 24381371

6. Wallenius M, Lind A, Akel O, Karlsson E, Svensson M, Arvidsson E, et al. Autoantibodies in Pandemrix((R))-induced narcolepsy: Nine candidate autoantigens fail the conformational autoantibody test. Autoimmunity. 2019:1–7. Epub 2019/07/23. doi: 10.1080/08916934.2019.1643843 31328572.

7. Luo G, Ambati A, Lin L, Bonvalet M, Partinen M, Ji X, et al. Autoimmunity to hypocretin and molecular mimicry to flu in type 1 narcolepsy. Proceedings of the National Academy of Sciences of the United States of America. 2018;115(52):E12323–E32. Epub 2018/12/12. doi: 10.1073/pnas.1818150116 30541895.

8. Latorre D, Kallweit U, Armentani E, Foglierini M, Mele F, Cassotta A, et al. T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature. 2018;562(7725):63–8. doi: 10.1038/s41586-018-0540-1 30232458

9. Pedersen NW, Holm A, Kristensen NP, Bjerregaard A-M, Bentzen AK, Marquard AM, et al. CD8+ T cells from patients with narcolepsy and healthy controls recognize hypocretin neuron-specific antigens. Nature communications. 2019;10(1):837. doi: 10.1038/s41467-019-08774-1 30783092

10. Han F, Faraco J, Dong XS, Ollila HM, Lin L, Li J, et al. Genome Wide Analysis of Narcolepsy in China Implicates Novel Immune Loci and Reveals Changes in Association Prior to Versus After the 2009 H1N1 Influenza Pandemic. PLoS Genetics. 2013;9(10):e1003880. doi: 10.1371/journal.pgen.1003880 24204295

11. Han F, Lin L, Li J, Dong SX, An P, Zhao L, et al. HLA-DQ association and allele competition in Chinese narcolepsy. Tissue Antigens. 2012;80(4):328–35. Epub 2012/08/07. doi: 10.1111/j.1399-0039.2012.01948.x 22862152.

12. Hor H, Kutalik Z, Dauvilliers Y, Valsesia A, Lammers GJ, Donjacour CE, et al. Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy. Nat Genet. 2010;42(9):786–9. Epub 2010/08/17. doi: 10.1038/ng.647 20711174

13. Hong SC, Lin L, Lo B, Jeong JH, Shin YK, Kim SY, et al. DQB1*0301 and DQB1*0601 modulate narcolepsy susceptibility in Koreans. Human immunology. 2007;68(1):59–68. Epub 2007/01/09. doi: 10.1016/j.humimm.2006.10.006 17207713.

14. Ollila HM, Fernandez-Vina M, Mignot E. HLA-DQ Allele Competition in Narcolepsy: A Comment on Tafti et al. DQB1 locus alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. Sleep. 2015;38(1):147–51. doi: 10.5665/sleep.4342 25325462

15. Ollila HM, Ravel JM, Han F, Faraco J, Lin L, Zheng X, et al. HLA-DPB1 and HLA class I confer risk of and protection from narcolepsy. American journal of human genetics. 2015;96(1):136–46. Epub 2015/01/13. doi: 10.1016/j.ajhg.2014.12.010 25574827.

16. Szakacs A, Darin N, Hallbook T. Increased childhood incidence of narcolepsy in western Sweden after H1N1 influenza vaccination. Neurology. 2013;80(14):1315–21. Epub 2013/03/15. doi: 10.1212/WNL.0b013e31828ab26f 23486871.

17. Sarkanen TO, Alakuijala APE, Dauvilliers YA, Partinen MM. Incidence of narcolepsy after H1N1 influenza and vaccinations: Systematic review and meta-analysis. Sleep Med Rev. 2017. Epub 2017/08/30. doi: 10.1016/j.smrv.2017.06.006 28847694.

18. Persson I, Granath F, Askling J, Ludvigsson JF, Olsson T, Feltelius N. Risks of neurological and immune-related diseases, including narcolepsy, after vaccination with Pandemrix: a population- and registry-based cohort study with over 2 years of follow-up. Journal of internal medicine. 2014;275(2):172–90. Epub 2013/10/19. doi: 10.1111/joim.12150 24134219.

19. Nohynek H, Jokinen J, Partinen M, Vaarala O, Kirjavainen T, Sundman J, et al. AS03 adjuvanted AH1N1 vaccine associated with an abrupt increase in the incidence of childhood narcolepsy in Finland. PloS one. 2012;7(3):e33536. Epub 2012/04/04. doi: 10.1371/journal.pone.0033536 22470453.

20. Partinen M, Saarenpaa-Heikkila O, Ilveskoski I, Hublin C, Linna M, Olsen P, et al. Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland. PloS one. 2012;7(3):e33723. Epub 2012/04/04. doi: 10.1371/journal.pone.0033723 22470463.

21. Hallberg P, Smedje H, Eriksson N, Kohnke H, Daniilidou M, Ohman I, et al. Pandemrix-induced narcolepsy is associated with genes related to immunity and neuronal survival. EBioMedicine. 2019. Epub 2019/02/04. doi: 10.1016/j.ebiom.2019.01.041 30711515.

22. Han F, Lin L, Warby SC, Faraco J, Li J, Dong SX, et al. Narcolepsy onset is seasonal and increased following the 2009 H1N1 pandemic in China. Annals of neurology. 2011;70(3):410–7. doi: 10.1002/ana.22587 21866560.

23. Han F, Lin L, Li J, Dong XS, Mignot E. Decreased incidence of childhood narcolepsy 2 years after the 2009 H1N1 winter flu pandemic. Annals of neurology. 2013;73(4):560. Epub 2012/12/12. doi: 10.1002/ana.23799 23225098.

24. Bomfim IL, Lamb F, Fink K, Szakács A, Silveira A, Franzén L, et al. The immunogenetics of narcolepsy associated with A(H1N1)pdm09 vaccination (Pandemrix) supports a potent gene–environment interaction. Genes And Immunity. 2017;18:75. doi: 10.1038/gene.2017.1 28332559

25. Nelson WC, Pyo CW, Vogan D, Wang R, Pyon YS, Hennessey C, et al. An integrated genotyping approach for HLA and other complex genetic systems. Hum Immunol. 2015;76(12):928–38. Epub 2015/06/02. doi: 10.1016/j.humimm.2015.05.001 26027777.

26. Smith AG, Pyo CW, Nelson W, Gow E, Wang R, Shen S, et al. Next generation sequencing to determine HLA class II genotypes in a cohort of hematopoietic cell transplant patients and donors. Hum Immunol. 2014;75(10):1040–6. Epub 2014/08/30. doi: 10.1016/j.humimm.2014.08.206 25167774.

27. Zhao LP, Alshiekh S, Zhao M, Carlsson A, Elding Larsson H, Forsander G, et al. Next-Generation Sequencing Reveals That HLA-DRB3, -DRB4, and -DRB5 May Be Associated With Islet Autoantibodies and Risk for Childhood Type 1 Diabetes. Diabetes. 2016;65(3):710–8. doi: 10.2337/db15-1115 26740600

28. Payami H, Joe S, Farid NR, Stenszky V, Chan SH, Yeo PP, et al. Relative predispositional effects (RPEs) of marker alleles with disease: HLA-DR alleles and Graves disease. American journal of human genetics. 1989;45(4):541–6. 2491013.

29. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association between traits and haplotypes when linkage phase is ambiguous. American journal of human genetics. 2002;70(2):425–34. Epub 2002/01/16. doi: 10.1086/338688 11791212.

30. Lake SL, Lyon H, Tantisira K, Silverman EK, Weiss ST, Laird NM, et al. Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous. Human heredity. 2003;55(1):56–65. Epub 2003/08/02. doi: 10.1159/000071811 12890927.

31. Mignot E. Genetic and familial aspects of narcolepsy. Neurology. 1998;50(2 Suppl 1):S16–22. Epub 1998/03/04. doi: 10.1212/wnl.50.2_suppl_1.s16 9484418.

32. Dauvilliers Y, Maret S, Bassetti C, Carlander B, Billiard M, Touchon J, et al. A monozygotic twin pair discordant for narcolepsy and CSF hypocretin-1. Neurology. 2004;62(11):2137–8. Epub 2004/06/09. doi: 10.1212/wnl.62.11.2137 15184641.

33. Moss AJ, Gaughran FP, Karasu A, Gilbert AS, Mann AJ, Gelder CM, et al. Correlation between human leukocyte antigen class II alleles and HAI titers detected post-influenza vaccination. PloS one. 2013;8(8):e71376. Epub 2013/08/21. doi: 10.1371/journal.pone.0071376 23951151.

34. Patsopoulos NA, Barcellos LF, Hintzen RQ, Schaefer C, van Duijn CM, Noble JA, et al. Fine-Mapping the Genetic Association of the Major Histocompatibility Complex in Multiple Sclerosis: HLA and Non-HLA Effects. PLoS Genetics. 2013;9(11):e1003926. doi: 10.1371/journal.pgen.1003926 24278027

35. Regnell SE, Lernmark A. Early prediction of autoimmune (type 1) diabetes. Diabetologia. 2017;60(8):1370–81. Epub 2017/05/28. doi: 10.1007/s00125-017-4308-1 28550517.

36. Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, et al. Type 1 diabetes mellitus. Nature Reviews Disease Primers. 2017;3:17016. doi: 10.1038/nrdp.2017.16 28358037

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden