Fine epitope mapping of glycoprotein Gn in Guertu virus

Autoři: Jingyuan Zhang aff001;  Abulimiti Moming aff001;  Xihong Yue aff002;  Shu Shen aff003;  Dongliang Liu aff001;  Wan-xiang Xu aff004;  Chen Wang aff002;  Juntao Ding aff001;  Yijie Li aff001;  Fei Deng aff003;  Yujiang Zhang aff002;  Surong Sun aff001
Působiště autorů: Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi,China aff001;  Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China aff002;  State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China aff003;  NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China aff004
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223978


Guertu virus (GTV) is a tick-borne phleboviruses (TBPVs) which belongs to the genus Banyangvirus in the family of Phenuiviridae. In vitro and in vivo studies of GTV demonstrated that it was able to infect animal and human cell lines and could cause pathological lesions in mice. Glycoproteins (GP, including Gn and Gc) on the surface of Guertu virus (GTV) could bind to receptors on host cells and induce protective immunity in the host, but knowledge is now lacking on the information of B cell epitopes (BCEs) present on GTV-GP protein. The aim of this study was to identify all BCEs on Gn of the GTV DXM strain using rabbit pAbs against GTV-Gn. Seven fine BCEs and two antigenic peptides (APs) from nine reactive 16mer-peptides were identified, which are EGn1 (2PIICEGLTHS11), EGn2 (135CSQDSGT141), EGn3 (165IP EDVF170), EGn4 (169VFQEL K174), EGn5 (187IDGILFN193), EGn6 (223QTKWIQ228), EGn7 (237CHKDGIGPC245), AP-8 (299GVRVRPKCYGFSRMMA314) and AP-9 (355CASH FCSSAESGKKNT370), of which six of mapped BCEs were recognized by the IgG-positive sheep serum obtained from sheep GTV-infected naturally. Multiple sequence alignments (MSA) based on each mapped BCE motif identified that the most of identified BCEs and APs are highly conserved among 10 SFTSV strains from different countries and lineages that share relatively close evolutionary relationships with GTV. The fine epitope mapping of the GTV-Gn would provide basic data with which to explore the GTV-Gn antigen structure and pathogenic mechanisms, and it could lay the foundation for the design and development of a GTV multi-epitope peptide vaccine and detection antigen.

Klíčová slova:

Amino acid sequence analysis – Antibodies – Antigens – Plasmid construction – Sequence motif analysis – Sheep – Epitope mapping – Immune serum


1. Kim KH, Yi J, Kim G, Choi SJ, Jun KI, Kim NH, et al. Severe fever with thrombocytopenia syndrome, South Korea, 2012. Emerg Infect Dis. 2013; 19: 1892–1894. 24206586

2. Kurihara S, Satoh A, Yu F, Hayasaka D, Shimojima M, Tashiro M, et al. The world first two cases of severe fever with thrombocytopenia syndrome: an epidemiological study in Nagasaki, Japan. J Infect Chemother. 2013; 22(7): 461–465. 27142979

3. Takahashi T, Maeda K, Suzuki T, Ishido A, Shigeoka T, Tominaga T, et al. The first identification and retrospective study of Severe fever with thrombocytopenia syndrome in Japan. J Infect Dis. 2014; 209(6): 816–827. 24231186

4. Yu XJ, Liang MF, Zhang SY, Liu Y, Li JD, Sun YL, et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med. 2011; 364(16): 1523–1532. 21410387

5. Mcmullan LK, Folk SM, Kelly AJ, MacNeil A, Goldsmith CS, Metcalfe MG, et al. A new phlebovirus associated with severe febrile illness in Missouri. N Engl J Med. 2012; 367(9): 834–841. 22931317

6. Fill MM, Compton ML, Mcdonald EC, Moncayo AC, Dunn JR, Schaffner W, et al. Novel clinical and pathologic findings in a heartland virus-associated death. Clin Infect Dis. 2016; 64: 510–512. 27927857

7. Muehlenbachs A, Fata CR, Lambert AJ, Paddock CD, Velez JO, Blau DM, et al. Heartland virus-associated death in Tennessee. Clin Infect Dis. 2014; 59: 845–850. 24917656

8. Shi M, Lin X D, Tian JH, Chen LJ, Chen X, Li CX, et al. Redefining the invertebrate RNA virosphere. Nature. 2016; 540(7634): 539–542. 27880757

9. Shen S, Duan XM, Wang B, Zhu LY, Zhang YF, Zhang JY, et al. A novel tick-borne phlebovirus, closely related to severe fever with thrombocytopenia syndrome virus and Heartland virus, might be a potential pathogen. Emerg Microbes Infect. 2018; 7(1): 95–108. 29802259

10. Abudurexiti A, Adkins S, Alioto D, Alkhovsky SV, Avšič-Županc T, Ballinger MJ, et al. Taxonomy of the order Bunyavirales: update 2019. Arch Virol. 2019; 164(7): 1949–1965. 31065850

11. Wu Y, Zhu Y, Gao F, Jiao Y, Oladejo BO, Chai Y, et al. Structures of phlebovirus glycoprotein Gn and identification of a neutralizing antibody epitope. Proc Natl Acad Sci USA. 2017; 114(36): E7564. 28827346

12. Hofmann H, Li X, Zhang X, Liu W, Annika Kühl, Kaup F, et al. Severe fever with thrombocytopenia virus glycoproteins are targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pH-dependent entry into human and animal cell lines. J Virol. 2013; 87: 4384–4394.–12 23388721

13. Elliott RM, Brennan B. Emerging phleboviruses. Curr Opin Virol. 2014; 5: 50–57. 24607799

14. Suda Y, Fukushi S, Tani H, Murakami S, Saijo M, Horimoto T, et al. Analysis of the entry mechanism of Crimean-Congo hemorrhagic fever virus, using a vesicular stomatitis virus pseudotyping system. Arch Virol. 2016; 161: 1447–1454. 26935918

15. Matsuno K, Weisend C, Kajihara M, Matysiak C, Williamson BN, Simuunza M, et al. Comprehensive molecular detection of tick-borne phleboviruses leads to the retrospective identification of taxonomically unassigned bunyaviruses and the discovery of a novel member of the genus phlebovirus. J Virol. 2015; 89: 594–604. 25339769

16. Lian Y, Huang ZC, Ge M. Deep maxout networks applied to antibody class- specific B-cell epitopes prediction. Acta Laser Biology Sinica. 2016; 25(1):56–60.

17. Morrow JF, Cohen SN, Chang ACY, Boyer HW, Goodman HM, Helling RB. Replication and transcription of eukaryotic DNA in Escherichia coli. Proc Natl Acad Sci USA. 1974; 71(5): 1743–1747. 4600264

18. Houen G. Peptide Antibodies: Past, Present, and Future. Methods Mol Biol. 2015; 1348:1–6. 26424257

19. Ladner Robert C. Mapping the Epitopes of Antibodies. Biotechnol Geneti Eng Rev. 2007; 24: 1–30. 18059626

20. Han Z, Zhao F, Shao Y, Liu X, Song Y, Liu S. Fine level epitope mapping and conservation analysis of two novel linear B-cell epitopes of the avian infectious bronchitis coronavirus nucleocapsid protein. Virus Research. 2013; 171: 54–64. 23123213

21. Xu WX, He YP, Tang HP, Jia XF, Ji CN, Gu SH, et al. Minimal motif mapping of a known epitope on human zona pellucida protein-4 using a peptide biosynthesis strategy. J Reprod Immunol. 2009; 81: 9–16. 19539378

22. Xu WX, Wang J, Tang HP, Chen LH, Lian WB, Zhan JM, et al. A simpler and more cost-effective peptide biosynthetic method using the truncated GST as carrier for epitope mapping. PloS One. 2017; 12(10): e0186097. 29023483

23. Xu WX, He YP, Wang J, Tang HP, Shi HJ, Sun XX, et al. Mapping of minimal motifs of B-Cell epitopes on human zona pellucida glycoprotein-3. Clin Dev Immunol. 2014; 2012(1): 831010. 22162720

24. Xu WX, Wang J, Tang HP, He YP, Zhu QX, Gupta SK, et al. Epitomics: IgG-epitome decoding of E6, E7 and L1 proteins from oncogenic human papillomavirus type 58. Sci Rep. 2016; 6(6): 34686. 27708433

25. Moming A, Tuoken D, Yue XH, Xu WX, Guo R, Liu DL, et al. Mapping of B-cell epitopes on the N- terminal and C-terminal segment of nucleocapsid protein from Crimean-Congo hemorrhagic fever virus. PLoS ONE. 2018, 13(9): e0204264. 30235312

26. Shalitanati A, Yu H, Liu DL, Xu WX, Yue XH, Guo R, et al. Fine mapping epitope on glycoprotein-Gn from Crimean-Congo hemorrhagic fever virus. Comp Immunol Microbiol Infect Dis. 2018; 59: 24–31. 30290884

27. Shi J, Hu S, Liu X, Yang J, Liu D, Wu L, et al. Migration, recombination, and reassortment are involved in the evolution of severe fever with thrombocytopenia syndrome bunyavirus. Infect Genet Evol. 2016; (47): 109–117. 27884653

28. Garnier J. The GOR method for predicting secondary structures in proteins. Prediction of protein structure and the principles of protein conformation. 1989; 417–465.

29. Chou PY, Fasman GD. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978; 47(6): 145–148. 364941

30. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982; 157: 105–132.–0 7108955

31. Karplus PA, Schulz GE. Prediction of chain flexibility in proteins. The Science of Nature. 1985; 72(4): 212–213.

32. Emini EA, Hughes JV, Perlow DS, Boger J. Induction of hepatitis A virus- neutralizing antibody by a virus-specific synthetic peptide. J Virol. 1985; 55: 836–839. 2991600

33. Jameson BA, Wolf H. The antigenic index: A novel algorithm for predicting antigenic determinants. Comput Appl Biosci. 1988; 4: 181–186. 2454713

34. Sanchez AJ, Vincent MJ, Nichol ST. Characterization of the glycoproteins of Crimean-Congo hemorrhagic fever virus. J Virol. 2002; 76: 7263–7275.–7275.2002 12072526

35. Arikawa J, Yao JS, Yoshimatsu K, Takashima I, Hashimoto N. Protective role of antigenic sites on the envelope protein of Hantaan virus defined by monoclonal antibodies. Arch Virol. 1992; 126: 271–281. 1381911

36. Yu RS, Zhu R, Gao WX, Zhang M, Dong SJ, Chen BQ, et al. Fine mapping and conservation analysis of linear B-cell epitopes of peste des petits ruminants virus hemagglutinin protein. Vet Microbiol. 2017; 208: 110–117. 28888625

37. Yu R, Fan X, Xu W, Li W, Dong S, Zhu Y, et al. Fine mapping and conservation analysis of linear B-cell epitopes of peste des petits ruminants virus nucleoprotein. Vet Microbiol. 2015; 175: 132–138 25465659

38. He YP, Xu WX, Hong AZ, Liao MC, Ji CN, Gu SH, et al. Immunogenic comparison for two different recombinant chimeric peptides (CP12 and CP22) containing one or two copies of three linear B cell epitopes from β-hCG subunit. J Biotechnol. 151: 15–21 21084058

39. Dillner J. Mapping of linear epitopes of human papillomavirus type 16: the E1, E2, E4, E5, E6 and E7 open reading frames. Int J Cancer. 1990; 48: 703–711 1698732

40. Hua R, Zhou Y, Wang Y, Hua Y, Tong G. Identification of two antigenic epitopes on SARS-CoV spike protein. Biochem Biophys Res Commun. 2004; 319: 929–935 15184071

41. Zhao R, Cui S, Guo L, Wu C, Gonzalez R, Paranhos-Baccalà G, et al. Identification of a highly conserved H1 subtype-specific epitope with diagnostic potential in the hemagglutinin protein of influenza A virus. PLoS One. 2011; 6(8): e23374. 21886787

42. Roberts BL, Markland W, Ley AC, Kent RB, White DW, Guterman SK, et al. Directed evolution of a protein: selection of potent neutrophil elastase inhibitors displayed on M13 fusion phage. Proc Natl Acad Sci USA. 1992; 89: 2429–2433. doi: 10.1073/pnas.89.6.2429 1549606

43. Liu D, Li Y, Zhao J, Deng F, Duan X, Kou C, Wu T, et al. Fine epitope mapping of the central immunodominant region of nucleoprotein from Crimean-Congo hemorrhagic fever virus (CCHFV). PLoS One. 2014; 9(11): e108419. 25365026

Článek vyšel v časopise


2019 Číslo 10