Diagnostic accuracy of midkine on hepatocellular carcinoma: A meta-analysis


Autoři: Bo-han Zhang aff001;  Bo Li aff001;  Ling-xiang Kong aff001;  Lv-nan Yan aff001;  Jia-yin Yang aff001
Působiště autorů: Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223514

Souhrn

Objective

To evaluate the dependability and accuracy of midkine (MK) in the diagnosis of hepatocellular carcinoma (HCC).

Methods

PubMed, EMBASE, Web of Science, China Biology Medicine disc and grey literature sources were searched from the date of database inception to January 2019. Two authors (B-H.Z. and B.L.) independently extracted the data and evaluated the study quality using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. The sensitivity, specificity, positive likelihood ratio (LR+) and negative likelihood ratio (LR−) were estimated using a bivariate model. Moreover, hierarchical summary receiver operating characteristic curves were generated. The diagnostic odds ratio (DOR) and area under the curve (AUC) were pooled using a univariate model.

Results

Nine articles (11 studies) were included (1941 participants). The bivariate analysis revealed that the sensitivity and specificity of MK for HCC diagnosis were 0.85 (95% CI 0.78–0.91) and 0.83 (95% CI 0.76–0.88), respectively. We also found a LR+ of 5.05 (95% CI 3.33–7.40), a LR− of 0.18 (95% CI 0.11–0.28), a DOR of 31.74 (95% CI 13.98–72.09) and an AUC of 0.91 (95% CI 0.84–0.99). Subgroup analyses showed that MK provided the best efficiency for HCC diagnosis when the cutoff value was greater than 0.5 ng/mL.

Conclusions

MK has an excellent diagnostic value for hepatocellular carcinoma.

Klíčová slova:

Cancer detection and diagnosis – Cirrhosis – Database searching – Egypt – Enzyme-linked immunoassays – Gastrointestinal tumors – Hepatocellular carcinoma – Metaanalysis


Zdroje

1. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. 2018;69(1):182–236. doi: 10.1016/j.jhep.2018.03.019 29628281.

2. El-Serag HB, Kanwal F. Epidemiology of hepatocellular carcinoma in the United States: where are we? Where do we go? Hepatology. 2014;60(5):1767–75. doi: 10.1002/hep.27222 24839253.

3. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117–71. doi: 10.1016/S0140-6736(14)61682-2 25530442.

4. Sun H-L, Cui R, Zhou J, Teng K-y, Hsiao Y-H, Nakanishi K, et al. ERK activation globally downregulates miRNAs through phosphorylating exportin-5. Cancer Cell. 2016;30(5):723–36. doi: 10.1016/j.ccell.2016.10.001 27846390.

5. Tzartzeva K, Obi J, Rich NE, Parikh ND, Marrero JA, Yopp A, et al. Surveillance Imaging and Alpha Fetoprotein for Early Detection of Hepatocellular Carcinoma in Patients With Cirrhosis: A Meta-analysis. Gastroenterology. 2018;154(6):1706–18.e1. doi: 10.1053/j.gastro.2018.01.064 29425931.

6. European Association For The Study Of The Liver. EASL–EORTC clinical practice guidelines: management of hepatocellular carcinoma. Journal of hepatology. 2012;56(4):908–43. doi: 10.1016/j.jhep.2011.12.001 22424438.

7. Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecassis MM, Roberts LR, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology. 2018;67(1):358–80. doi: 10.1002/hep.29086 28130846.

8. Song P, Tang Q, Feng X, Tang W. Biomarkers: evaluation of clinical utility in surveillance and early diagnosis for hepatocellular carcinoma. Scand J Clin Lab Invest Suppl. 2016;245(sup245):S70–6. doi: 10.1080/00365513.2016.1210328 27438343.

9. Muramatsu H, Song XJ, Koide N, Hada H, Tsuji T, Kadomatsu K, et al. Enzyme-linked immunoassay for midkine, and its application to evaluation of midkine levels in developing mouse brain and sera from patients with hepatocellular carcinomas. J Biochem. 1996;119(6):1171–5. doi: 10.1093/oxfordjournals.jbchem.a021364 8827454.

10. Ikematsu S, Yano A, Aridome K, Kikuchi M, Kumai H, Nagano H, et al. Serum midkine levels are increased in patients with various types of carcinomas. British journal of cancer. 2000;83(6):701. doi: 10.1054/bjoc.2000.1339 10952771.

11. Jones DR. Measuring midkine: the utility of midkine as a biomarker in cancer and other diseases. British journal of pharmacology. 2014;171(12):2925–39. doi: 10.1111/bph.12601 24460734.

12. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine. 2009;151(4):264–9. doi: 10.7326/0003-4819-151-4-200908180-00135 19622511.

13. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–36. doi: 10.7326/0003-4819-155-8-201110180-00009 22007046.

14. Devillé WL, Buntinx F, Bouter LM, Montori VM, De Vet HC, Van der Windt DA, et al. Conducting systematic reviews of diagnostic studies: didactic guidelines. BMC medical research methodology. 2002;2(1):9. doi: 10.1186/1471-2288-2-9 12097142.

15. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. Journal of clinical epidemiology. 2005;58(10):982–90. doi: 10.1016/j.jclinepi.2005.02.022 16168343.

16. Rutter CM, Gatsonis CA. A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. Statistics in medicine. 2001;20(19):2865–84. doi: 10.1002/sim.942 11568945.

17. Rucker G, Schumacher M. Summary ROC curve based on a weighted Youden index for selecting an optimal cutpoint in meta-analysis of diagnostic accuracy. Statistics in medicine. 2010;29(30):3069–78. doi: 10.1002/sim.3937 21170902.

18. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88. doi: 10.1016/0197-2456(86)90046-2 3802833.

19. Holling H, Böhning W, Böhning D. Meta-analysis of diagnostic studies based upon SROC-curves: a mixed model approach using the Lehmann family. Statistical Modelling: An International Journal. 2012;12(4):347–75. doi: 10.1177/1471082x1201200403

20. Sutton AJ, Abrams KR, Jones DR, Sheldon TA, Song FJ. Methods for meta-analysis in medical research. Chichester, West Sussex, England: John Wiley & Sons Ltd. 2000.

21. Huedo-Medina TB, Sanchez-Meca J, Marin-Martinez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods. 2006;11(2):193–206. doi: 10.1037/1082-989X.11.2.193 16784338.

22. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. doi: 10.1136/bmj.327.7414.557 12958120.

23. Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. Journal of clinical epidemiology. 2005;58(9):882–93. doi: 10.1016/j.jclinepi.2005.01.016 16085191.

24. Habachi NA, El-Shayeb A, Mansour A, Zaghloul M. The validity of serum midkine, dickkopf-1 and alpha-L-fucosidase as surrogate biomarkers for the diagnosis of hepatocellular carcinoma. Journal of Hepatology. 2018;68:S428. doi: 10.1016/s0168-8278(18)31097-3

25. Hodeib H, ELshora O, Selim A, Sabry NM, EL-ashry HM. Serum midkine and osteopontin levels as diagnostic biomarkers of hepatocellular carcinoma. Electronic physician. 2017;9(1):3492. doi: 10.19082/3492 28243398.

26. Hung YJ, Lin ZH, Cheng TI, Liang CT, Kuo TM, Kao KJ. Serum midkine as a prognostic biomarker for patients with hepatocellular carcinoma. American journal of clinical pathology. 2011;136(4):594–603. doi: 10.1309/AJCPWT70XOVXSVGE 21917682.

27. Li J, Qian HH, Kang XY, Yang ZB, Wu MC, Yin ZF. Heparin-enzyme linked immunosorbent assay in determination of serum midkine concentration and its application in diagnosis of hepatocellular carcinoma. Acad J Sec Mil Med Univ. 2006;27:0631–3.

28. Mashaly AH, Anwar R, Ebrahim MA, Eissa LA, El Shishtawy MM. Diagnostic and Prognostic Value of Talin-1 and Midkine as Tumor Markers in Hepatocellular Carcinoma in Egyptian Patients. Asian Pacific journal of cancer prevention: APJCP. 2018;19(6):1503–8. doi: 10.22034/APJCP.2018.19.6.1503 29936723.

29. Saad Y, El-Serafy M, Eldin MS, Abdellatif Z, Khatab H, Elbaz T, et al. New genetic markers for diagnosis of hepatitis C related hepatocellular carcinoma in Egyptian patients. Journal of gastrointestinal and liver diseases: JGLD. 2013;22(4):419–25. 24369324.

30. Shaheen KY, Abdel-Mageed AI, Safwat E, AlBreedy AM. The value of serum midkine level in diagnosis of hepatocellular carcinoma. International journal of hepatology. 2015;2015:146389. doi: 10.1155/2015/146389 25737783.

31. Vongsuvanh R, van der Poorten D, Iseli T, Strasser SI, McCaughan GW, George J. Midkine Increases Diagnostic Yield in AFP Negative and NASH-Related Hepatocellular Carcinoma. PloS one. 2016;11(5):e0155800. doi: 10.1371/journal.pone.0155800 27219517.

32. Zhu WW, Guo JJ, Guo L, Jia HL, Zhu M, Zhang JB, et al. Evaluation of midkine as a diagnostic serum biomarker in hepatocellular carcinoma. Clinical cancer research: an official journal of the American Association for Cancer Research. 2013;19(14):3944–54. doi: 10.1158/1078-0432.CCR-12-3363 23719264.

33. Whiting P, Harbord R, Kleijnen J. No role for quality scores in systematic reviews of diagnostic accuracy studies. BMC medical research methodology. 2005;5(1):19. doi: 10.1186/1471-2288-5-19 15918898.

34. Ergüven M, Muramatsu T, Bilir A. Midkine: from embryogenesis to pathogenesis and therapy: Springer Science & Business Media; 2012.

35. Jing X, Cui X, Liang H, Hao C, Han C. Diagnostic accuracy of ELISA for detecting serum Midkine in cancer patients. PloS one. 2017;12(7):e0180511. doi: 10.1371/journal.pone.0180511 28686647.

36. Jones CM, Athanasiou T. Summary receiver operating characteristic curve analysis techniques in the evaluation of diagnostic tests. Ann Thorac Surg. 2005;79(1):16–20. doi: 10.1016/j.athoracsur.2004.09.040 15620907.

37. van Enst WA, Naaktgeboren CA, Ochodo EA, de Groot JA, Leeflang MM, Reitsma JB, et al. Small-study effects and time trends in diagnostic test accuracy meta-analyses: a meta-epidemiological study. Syst Rev. 2015;4(1):66. doi: 10.1186/s13643-015-0049-8 25956716.

38. Jia HL, Ye QH, Qin LX, Budhu A, Forgues M, Chen Y, et al. Gene expression profiling reveals potential biomarkers of human hepatocellular carcinoma. Clinical cancer research: an official journal of the American Association for Cancer Research. 2007;13(4):1133–9. doi: 10.1158/1078-0432.CCR-06-1025 17317821.


Článek vyšel v časopise

PLOS One


2019 Číslo 10

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Léčba bolesti v ordinaci praktického lékaře
nový kurz
Autoři: MUDr. PhDr. Zdeňka Nováková, Ph.D.

Revmatoidní artritida: včas a k cíli
Autoři: MUDr. Heřman Mann

Jistoty a nástrahy antikoagulační léčby aneb kardiolog - neurolog - farmakolog - nefrolog - právník diskutují
Autoři: doc. MUDr. Štěpán Havránek, Ph.D., prof. MUDr. Roman Herzig, Ph.D., doc. MUDr. Karel Urbánek, Ph.D., prim. MUDr. Jan Vachek, MUDr. et Mgr. Jolana Těšínová, Ph.D.

Léčba akutní pooperační bolesti
Autoři: doc. MUDr. Jiří Málek, CSc.

Nové antipsychotikum kariprazin v léčbě schizofrenie
Autoři: prof. MUDr. Cyril Höschl, DrSc., FRCPsych.

Všechny kurzy
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se