Re-evaluation of a Tn5::gacA mutant of Pseudomonas syringae pv. tomato DC3000 uncovers roles for uvrC and anmK in promoting virulence


Autoři: Megan R. O’Malley aff001;  Alexandra J. Weisberg aff001;  Jeff H. Chang aff001;  Jeffrey C. Anderson aff001
Působiště autorů: Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America aff001;  Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223637

Souhrn

Pseudomonas syringae is a taxon of plant pathogenic bacteria that can colonize and proliferate within the interior space of leaf tissue. This process requires P. syringae to rapidly upregulate the production of virulence factors including a type III secretion system (T3SS) that suppress host defenses. GacS/A is a two-component system that regulates virulence of many plant and animal pathogenic bacteria including P. syringae. We recently investigated the virulence defect of strain AC811, a Tn5::gacA mutant of P. syringae pv. tomato DC3000 that is less virulent on Arabidopsis. We discovered that decreased virulence of AC811 is not caused by loss of GacA function. Here, we report the molecular basis of the virulence defect of AC811. We show that AC811 possesses a nonsense mutation in anmK, a gene predicted to encode a 1,6-anhydromuramic acid kinase involved in cell wall recycling. Expression of a wild-type allele of anmK partially increased growth of AC811 in Arabidopsis leaves. In addition to the defective anmK allele, we also show that the Tn5 insertion in gacA exerts a polar effect on uvrC, a downstream gene encoding a regulator of DNA damage repair. Expression of the wild-type anmK allele together with increased expression of uvrC fully restored the virulence of AC811 during infection of Arabidopsis. These results demonstrate that defects in anmK and uvrC are together sufficient to account for the decreased virulence of AC811, and suggest caution is warranted in assigning phenotypes to GacA function based on insertional mutagenesis of the gacA-uvrC locus.

Klíčová slova:

Arabidopsis thaliana – Leaves – Nonsense mutation – Plant bacterial pathogens – Polymerase chain reaction – Virulence factors – Pseudomonas syringae – Apoplastic space


Zdroje

1. Xin XF, Kvitko B, He SY. 2018. Pseudomonas syringae: What it takes to be a pathogen. Nat Rev Microbiol. 16:316–328. doi: 10.1038/nrmicro.2018.17 29479077

2. Hirano SS, Upper CD. 2000. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae- a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev. 64:624–653. doi: 10.1128/mmbr.64.3.624-653.2000 10974129

3. Abramovitch RB, Anderson JC, Martin GB. 2006. Bacterial elicitation and evasion of plant innate immunity. Nat Rev Mol Cell Biol. 7:601–611. doi: 10.1038/nrm1984 16936700

4. Fan J, Crooks C, Creissen G, Hill L, Fairhurst S, Doerner P, Lamb C. 2011. Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis. Science. 331:1185–1188. doi: 10.1126/science.1199707 21385714

5. Pel MJC, van Dijken AJH, Bardoel BW, Seidl MF, der Ent S, Van Strijp JAG, Pieterse CMJ. 2014. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA. Mol Plant Microbe Interact. 27:603–610. doi: 10.1094/MPMI-02-14-0032-R 24654978

6. Guo M, Block A, Bryan CD, Becker DF, Alfano JR. 2012. Pseudomonas syringae catalases are collectively required for plant pathogenesis. J Bacteriol. 194:5054–5064. doi: 10.1128/JB.00999-12 22797762

7. Panopoulos NJ, Schroth MN. 1974. Role of flagellar motility in the invasion of bean leaves by Pseudomonas phaseolicola. Phytopathology. 64:1389–1397.

8. Taguchi F, Ichinose Y. 2011. Role of Type IV pili in virulence of Pseudomonas syringae pv. tabaci 6605: correlation of motility, multidrug resistance, and HR-inducing activity on a nonhost plant. Mol Plant Microbe Interact. 24:1001–1011. doi: 10.1094/MPMI-02-11-0026 21615203

9. Anderson JC, Wan Y, Kim YM, Pasa-Tolic L, Metz TO, Peck SC. 2014. Decreased abundance of type III secretion system-inducing signals in Arabidopsis mkp1 enhances resistance against Pseudomonas syringae. Proc Natl Acad Sci USA. 111:6846–6851. doi: 10.1073/pnas.1403248111 24753604

10. Yu X, Lund SP, Scott RA, Greenwald JW, Records AH, Nettleton D, Lindow SE, Gross DC, Beattie GA. 2013. Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proc Natl Acad Sci USA. 110:E425–34. doi: 10.1073/pnas.1221892110 23319638

11. Yu X, Lund SP, Greenwald JW, Records AH, Scott RA, Nettleton D, Lindow SE, Gross DC, Beattie GA. 2014. Transcriptional Analysis of the Global Regulatory Networks Active in Pseudomonas syringae during Leaf Colonization. mBio. 5:1–17.

12. Nobori T, Velásquez AC, Wu J, Kvitko BH, Kremer JM, Wang Y, He SY, Tsuda K. 2018. Transcriptome landscape of a bacterial pathogen under plant immunity. Proc Natl Acad Sci. USA 115:E3055–3064. doi: 10.1073/pnas.1800529115 29531038

13. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FSL. 2016. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 44:D646–D653. doi: 10.1093/nar/gkv1227 26578582

14. Heeb S, Haas D. 2001. Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant Microbe Interact. 14:1351–1363. doi: 10.1094/MPMI.2001.14.12.1351 11768529

15. Rich JJ, Kinscherf TG, Kitten T, Willis DK. 1994. Genetic evidence that the gacA gene encodes the cognate response regulator for the lemA sensor in Pseudomonas syringae. J Bacteriol. 176:7468–7475. doi: 10.1128/jb.176.24.7468-7475.1994 8002569

16. Chatterjee A, Cui Y, Yang H, Collmer A, Alfano JR, Chatterjee AK. 2003. GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors. Mol Plant Microbe Interact. 16:1106–1117. doi: 10.1094/MPMI.2003.16.12.1106 14651344

17. O’Malley MR, Chien C-F, Peck SC, Lin N-C, Anderson JC. 2019. A revised model for the role of GacS/GacA in regulating type III secretion by Pseudomonas syringae pv. tomato DC3000. Mol Plant Pathol. Forthcoming.

18. Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML. 2003. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci USA. 100:10181–10186. doi: 10.1073/pnas.1731982100 12928499

19. Lin NC, Martin GB. 2005. An avrPto/avrPtoB mutant of Pseudomonas syringae pv. tomato DC3000 does not elicit Pto-mediated resistance and is less virulent on tomato. Mol Plant Microbe Interact. 18:43–51. doi: 10.1094/MPMI-18-0043 15672817

20. Laville J, Voisard C, Keel C, Maurhofer M, Defago G, Haas D. 1992. Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci USA. 89:1562–1566. doi: 10.1073/pnas.89.5.1562 1311842

21. Moolenaar GF, van Sluis CA, Backendorf C, de Putte P Van. 1987. Regulation of the Escherichia coli excision repair gene uvrC. Overlap between the uvrC structural gene and the region coding for a 24 kd protein. Nucleic Acids Res. 15:4273–4289. doi: 10.1093/nar/15.10.4273 3295776

22. Eriksson ARB, Andersson RA, Pirhonen M, Palva ET. 1998. Two-component regulators involved in the global gontrol of virulence in Erwinia carotovora subsp. carotovora. Mol Plant Microbe Interact. 11:743–752. doi: 10.1094/MPMI.1998.11.8.743 9675890

23. Sancar A. 1996. DNA Excision Repair. Annu Rev Biochem. 65:43–81. doi: 10.1146/annurev.bi.65.070196.000355 8811174

24. Sharma S, Stark T, Moses RE. 1984. Distal regulatory functions for the uvrC gene of E. coli. Nucleic Acids Res. 12:5341–5354. doi: 10.1093/nar/12.13.5341 6087282

25. Yu X, Chen M, Jiang Z, Hu Y, Xie Z. 2014. The two-component regulators GacS and GacA positively regulate a nonfluorescent siderophore through the Gac/Rsm signaling cascade in high-siderophore-yielding Pseudomonas sp. Strain HYS. J Bacteriol. 196:3259–3270. doi: 10.1128/JB.01756-14 24982309

26. Hassan KA, Johnson A, Shaffer BT, Ren Q, Kidarsa TA, Elbourne LDH, Hartney S, Duboy R, Goebel NC, Zabriskie TM, Paulsen IT, Loper JE. 2010. Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ Microbiol. 12:899–915. doi: 10.1111/j.1462-2920.2009.02134.x 20089046

27. Cheng X, de Bruijn I, van der Voort M, Loper JE, Raaijmakers JM. 2013. The Gac regulon of Pseudomonas fluorescens SBW25. Environ Microbiol Rep. 5:608–619. doi: 10.1111/1758-2229.12061 23864577

28. Uehara T, Suefuji K, Valbuena N, Meehan B, Donegan M, Park JT. 2005. Recycling of the anhydro-N-acetylmuramic acid derived from cell wall murein involves a two-step conversion to N-acetylglucosamine-phosphate. J Bacteriol. 187:3643–3649. doi: 10.1128/JB.187.11.3643-3649.2005 15901686

29. Boudreau MA, Fisher JF, Mobashery S. 2012. Messenger functions of the bacterial cell wall-derived muropeptides. Biochemistry. 51:2974–2990. doi: 10.1021/bi300174x 22409164

30. Sancar A, Rupp WD. 1983. A novel repair enzyme: UvrABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region. Cell. 33:249–260. doi: 10.1016/0092-8674(83)90354-9 6380755

31. Reimmann C, Beyeler M, Latifi A, Winteler H, Foglino M, Lazdunski A, Haas D. 1997. The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol. 24:309–319. doi: 10.1046/j.1365-2958.1997.3291701.x 9159518

32. Liao C-H, McCallus DE, Fett WF, Kang Y. 1997. Identification of gene loci controlling pectate lyase production and soft-rot pathogenicity in Pseudomonas marginalis. Can J Microbiol. 43:425–431. doi: 10.1139/m97-060 9165701

33. Chieda Y, Iiyama K, Yasunaga-Aoki C, Lee JM, Kusakabe T, Shimizu S. 2005. Pathogenicity of gacA mutant of Pseudomonas aeruginosa PA01 in the silkworm, Bombyx mori. FEMS Microbiol Lett. 244:181–186. doi: 10.1016/j.femsle.2005.01.032 15727838

34. Beattie GA, Lindow SE. 1995. The secret life of foliar bacterial pathogens on leaves. Annu Rev Phytopathol. 33:145–172. doi: 10.1146/annurev.py.33.090195.001045 18294082

35. Chieda Y, Iiyama K, Lee JM, Kusakabe T, Yasunaga-Aoki C, Shimizu S. 2007. The gacA gene of Pseudomonas aeruginosa PAO1 is not required for full virulence in Bombyx mori. J Insect Biotechnol Sericology. 95:89–95.

36. Badger JL, Miller VL. 1998. Expression of invasin and motility are coordinately regulated in Yersinia enterocolitica. J Bacteriol. 180:793–800. 9473031

37. Castañeda M, Sánchez J, Moreno S, Núñez C, Espín G. 2001. The global regulators GacA and σS form part of a cascade that controls alginate production in Azotobacter vinelandii. J Bacteriol. 183:6787–6793. doi: 10.1128/JB.183.23.6787-6793.2001 11698366

38. Nanduri B, Shah P, Ramkumar M, Allen EB, Swiatlo E, Burgess SC, Lawrence ML. 2008. Quantitative analysis of Streptococcus pneumoniae TIGR4 response to in vitro iron restriction by 2-D LC ESI MS/MS. Proteomics. 8:2104–2114. doi: 10.1002/pmic.200701048 18491321

39. Leaden L, Silva LG, Ribeiro RA, dos Santos NM, Lorenzetti APR, Alegria TGP, Schulz ML, Medeiros MHG, Koide T, Marques M V. 2018. Iron deficiency generates oxidative stress and activation of the sos response in Caulobacter crescentus. Front Microbiol. 9:1–14. doi: 10.3389/fmicb.2018.00001

40. Ojha A, Hatfull GF. 2007. The role of iron in Mycobacterium smegmatis biofilm formation: The exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth. Mol Microbiol. 66:468–483. doi: 10.1111/j.1365-2958.2007.05935.x 17854402

41. Jones AM, Wildermuth MC. 2011. The phytopathogen Pseudomonas syringae pv. tomato DC3000 has three high-affinity iron-scavenging systems functional under iron limitation conditions but dispensable for pathogenesis. J Bacteriol. 193:2767–2775. doi: 10.1128/JB.00069-10 21441525

42. Heeb S, Itoh Y, Nishijyo T, Schnider U, Keel C, Wade J, Walsh U, O’Gara F, Haas D. 2000. Small, stable shuttle vectors based on the minimal pVS1 replicon for use in Gram-negative, plant-associated bacteria. Mol Plant Microbe Interact. 13:232–237. doi: 10.1094/MPMI.2000.13.2.232 10659714

43. Ditta G, Stanfield S, Corbin D, Helinski DR, Donald Helinskl CR. 1980. Broad host range DNA cloning system for Gram-negative bacteria: Construction of a gene bank of Rhizobium meliloti (plasmid RK2/plasmid vehicle/conjugal transfer/nif genes). Genetics. 77:7347–735.

44. Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10:R25. doi: 10.1186/gb-2009-10-3-r25 19261174

45. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 25: 2078–2079. doi: 10.1093/bioinformatics/btp352 19505943

46. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. 2010. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20:1297–1303. doi: 10.1101/gr.107524.110 20644199

47. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2:80–92.

48. Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:E45. doi: 10.1093/nar/29.9.e45 11328886

49. Brunet-Vega A, Pericay C, Quílez ME, Ramírez-Lázaro MJ, Calvet X, Lario S. 2015. Data on individual PCR efficiency values as quality control for circulating miRNAs. Data Br. 5:321–326.

50. Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 160:47–56. doi: 10.1016/0003-2697(87)90612-9 2952030


Článek vyšel v časopise

PLOS One


2019 Číslo 10

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Léčba bolesti v ordinaci praktického lékaře
nový kurz
Autoři: MUDr. PhDr. Zdeňka Nováková, Ph.D.

Revmatoidní artritida: včas a k cíli
Autoři: MUDr. Heřman Mann

Jistoty a nástrahy antikoagulační léčby aneb kardiolog - neurolog - farmakolog - nefrolog - právník diskutují
Autoři: doc. MUDr. Štěpán Havránek, Ph.D., prof. MUDr. Roman Herzig, Ph.D., doc. MUDr. Karel Urbánek, Ph.D., prim. MUDr. Jan Vachek, MUDr. et Mgr. Jolana Těšínová, Ph.D.

Léčba akutní pooperační bolesti
Autoři: doc. MUDr. Jiří Málek, CSc.

Nové antipsychotikum kariprazin v léčbě schizofrenie
Autoři: prof. MUDr. Cyril Höschl, DrSc., FRCPsych.

Všechny kurzy
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se