Iron is increased in the brains of ageing mice lacking the neurofilament light gene

Autoři: James C. Vickers aff001;  Anna E. King aff001;  Graeme H. McCormack aff001;  Aidan D. Bindoff aff001;  Paul A. Adlard aff002
Působiště autorů: Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia aff001;  The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article


There has been strong interest in the role of metals in neurodegeneration, and how ageing may predispose the brain to related diseases such as Alzheimer’s disease. Recent work has also highlighted a potential interaction between different metal species and various components of the cytoskeletal network in the brain, which themselves have a reported role in age-related degenerative disease and other neurological disorders. Neurofilaments are one such class of intermediate filament protein that have a demonstrated capacity to bind and utilise cation species. In this study, we investigated the consequences of altering the neurofilamentous network on metal ion homeostasis by examining neurofilament light (NFL) gene knockout mice, relative to wildtype control animals, at adulthood (5 months of age) and advanced age (22 months). Inductively coupled plasma mass spectroscopy demonstrated that the concentrations of iron (Fe), copper (Cu) and zinc (Zn) varied across brain regions and peripheral nerve samples. Zn and Fe showed statistically significant interactions between genotype and age, as well as between genotype and region, and Cu demonstrated a genotype and region interaction. The most substantial difference between genotypes was found in Fe in the older animals, where, across many regions examined, there was elevated Fe in the NFL knockout mice. This data indicates a potential relationship between the neurofilamentous cytoskeleton and the processing and/or storage of Fe through ageing.

Klíčová slova:

Aging – Alzheimer's disease – Brain diseases – Cations – Neural networks – Neurons – Zinc – Iron


1. Belaidi AA, Bush AI. Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem. 2016; 139:179–219.

2. Portbury AD, Adlard PA. Zinc signal in brain diseases. Int J Mol Sci. 2017; 18, E2506. doi: 10.3390/ijms18122506 29168792

3. Giampietro R, Spinelli F, Contino M, Colabufo NA. The pivotal role of copper in neurodegeneration: A new strategy for the therapy of neurodegenerative disorders. Mol Pharm. 2018; 15, 808–820. doi: 10.1021/acs.molpharmaceut.7b00841 29323501

4. Adlard PA, Bush AI. (2006) Metals and Alzheimer’s disease. J Alzheimers Dis. 2006; 10: 145–163. 17119284

5. Cristóvão JS, Santos R, Gomes CM. Metals and neuronal metal binding proteins implicated in Alzheimer’s disease. Oxid Med Cell Longev. 2016; 2016: 9812178. doi: 10.1155/2016/9812178 26881049

6. Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe K, et al. Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell. 2010; 142: 857–867. doi: 10.1016/j.cell.2010.08.014 20817278

7. Lei P, Ayton S, Appukuttan AT, Moon S, Duce JA, Volitakis I, et al. Lithium suppression of tau induces brain iron accumulation and neurodegeneration. Mol Psychiatry. 2017;22: 396–406. doi: 10.1038/mp.2016.96 27400857

8. Joppe K, Roser A-E, Maass F, Lingor P. The contribution of iron to protein aggregation disorders in the central nervous system. Frontiers Neurosci. 2019; 13: 15.10.

9. Ortega R, Carmona A, Roudeau S, Perrin L, Ducic T, Carboni E, et al. Alpha-Synuclein over-expression induces increased iron accumulation and redistribution in iron-exposed neurons. Mol Neurobiol. 2016; 53: 1925–1934. doi: 10.1007/s12035-015-9146-x 25833099

10. Kirkcaldie MTK, Dwyer ST. The third wave: Intermediate filaments in the maturing nervous system. Mol Cell Neurosci. 2017; 84: 68–76. doi: 10.1016/j.mcn.2017.05.010 28554564

11. Gai WP, Vickers JC, Blumbergs PC, Blessing WW. Loss of non-phosphorylated neurofilament immunoreactivity with preservation of tyrosine hydroxylase in surviving substantia nigra neurons in Parkinson’s disease. J Neurol Neurosurg Psychiat. 1994; 57: 1039–1046. doi: 10.1136/jnnp.57.9.1039 7916375

12. Vickers JC, King AE, Woodhouse A, Kirkcaldie MT, Staal JA, McCormack GH et al. Axonopathy and cytoskeletal disruption in degenerative diseases of the central nervous system. Brain Res Bull. 2009; 80: 217–223. doi: 10.1016/j.brainresbull.2009.08.004 19683034

13. Vickers JC, Kirkcaldie MTK, Phipps AJ, King AE. Alterations in neurofilaments and the transformation of the cytoskeleton in axons may provide insight into the aberrant neuronal changes of Alzheimer’s disease. Brain Res Bull. 2016; 126: 324–333. doi: 10.1016/j.brainresbull.2016.07.012 27475416

14. Lefebvre S, Mushynski ME. Characterization of the cation-binding properties of porcine neurofilaments. Biochemistry. 1988; 27: 8503–8508. doi: 10.1021/bi00422a031 3149507

15. Fernandez-Martos CM, King AE, Atkinson RA, Woodhouse A, Vickers JC. Neurofilament light gene deletion exacerbates amyloid, dystrophic neurite, and synaptic pathology in the APP/PS1 transgenic model of Alzheimer’s disease. Neurobiol Aging. 2015; 36: 2757–2767. doi: 10.1016/j.neurobiolaging.2015.07.003 26344875

16. Zhu Q, Couillard-Després S, Julien JP. Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp Neurol. 1997; 148: 299–316. doi: 10.1006/exnr.1997.6654 9398473

17. Liu Y, Staal JA, Canty AJ, Kirkcaldie M, King AE, Bibari O. et al. Cytoskeletal changes during development and aging in the cortex of neurofilament light protein knockout mice. J Comp Neurol. 2013; 521: 1817–1827. doi: 10.1002/cne.23261 23172043

18. Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed‐effects models. Methods Ecol Evolution. 2013; 4: 133–142.

19. Rogers JT, Leiter LM, McPhee J, Cahill CM, Zhan, Potter H et al. Translation of the alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5’-untranslated region sequences. J Biol Chem. 1999; 274: 6421–6431. doi: 10.1074/jbc.274.10.6421 10037734

20. Rogers JT, Randall JD, Cahill CM, Eder PS, Huang X, Gunshin H et al. An iron-responsive element type II in the 5’-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem. 2002; 277: 45518–45528. doi: 10.1074/jbc.M207435200 12198135

21. Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR et al. Cu(II) potentiation of alzheimer Abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem. 1999; 274: 37111–37116. doi: 10.1074/jbc.274.52.37111 10601271

22. Huang X, Atwood CS, Moir RD, Hartshorn MA, Tanzi RE, Bush AI. Trace metal contamination initiates the apparent auto-aggregation, amyloidosis, and oligomerization of Alzheimer’s Abeta peptides. J Biol Inorg Chem. 2004; 9: 954–960. doi: 10.1007/s00775-004-0602-8 15578276

23. Liu B, Moloney A, Meehan S, Morris K, Thomas SE, Serpell LC et al. Iron promotes the toxicity of amyloid beta peptide by impeding its ordered aggregation. J Biol Chem. 2011; 286: 4248–4256.

24. Mantyh PW, Ghilardi JR, Rogers S, DeMaster E, Allen CJ, Stimson ER et al. Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of beta-amyloid peptide. J Neurochem. 1993; 61: 1171–1174. doi: 10.1111/j.1471-4159.1993.tb03639.x 8360682

25. Schubert D, Chevion M. The role of iron in beta amyloid toxicity. Biochem Biophys Res Commun. 1995; 216: 702–707. doi: 10.1006/bbrc.1995.2678 7488167

26. Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem. 2010; 345: 91–104. doi: 10.1007/s11010-010-0563-x 20730621

27. Yamamoto A, Shin RA, Hasegawa K, Naiki H, Sato H, Yoshimasu F et al. Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer’s disease. J Neurochem. 2002; 82: 1137–1147. doi: 10.1046/j.1471-4159.2002.t01-1-01061.x 12358761

28. Good PF, Perl DP, Bierer LM, Schmeidler J. Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study. Ann Neurol. 1992; 31: 286–292. doi: 10.1002/ana.410310310 1637136

29. Lee DL, Strathmann FG, Gelein R, Walton J, Mayer-Pröschel M. Iron deficiency disrupts axon maturation of the developing auditory nerve. J Neurosci. 2012; 32: 5010–5015. doi: 10.1523/JNEUROSCI.0526-12.2012 22492056

30. Montine TJ, Farris DB, Graham DG. Covalent crosslinking of neurofilament proteins by oxidized catechols as a potential mechanism of Lewy body formation. J Neuropathol Exp Neurol. 1995; 54: 311–319. doi: 10.1097/00005072-199505000-00004 7745430

31. Pierson KB, Evenson MA. 200 Kd neurofilament protein binds Al, Cu and Zn. Biochem Biophys Res Commun. 1988; 152: 598–604. doi: 10.1016/s0006-291x(88)80080-9 3130052

32. Yao NY, Broedersz CP, Lin YC, Kasza KE, Mackintosh FC, Weitz DA. Elasticity in ionically cross-linked neurofilament networks. Biophys J. 2010; 98: 2147–2153. doi: 10.1016/j.bpj.2010.01.062 20483322

33. Pregent S, Lichtenstein A, Avinery R, Laser-Azogui A, Patolsky F, Beck R. Probing the interactions of intrinsically disordered proteins using nanoparticle tags. Nano Lett. 2015; 15: 3080–3087. doi: 10.1021/acs.nanolett.5b00073 25822629

34. Lei R, Lee JP, Francis MB, Kumar S. Structural regulation of a neurofilament-inspired intrinsically disordered protein brush by multisite phosphorylation. Biochemistry. 2018; 57: 4019–4028. doi: 10.1021/acs.biochem.8b00007 29557644

35. Bridel C, van Wieringen WN, Zetterberg H, Tijms BM, Teunissen CE; and the NFL Group. Diagnostic Value of Cerebrospinal Fluid Neurofilament Light Protein in Neurology: A Systematic Review and Meta-analysis. JAMA Neurol. 2019 doi: 10.1001/jamaneurol.2019.1534 31206160

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden