Elucidating optical field directed hierarchical self-assembly of homogenous versus heterogeneous nanoclusters with femtosecond optical tweezers


Autoři: Dipankar Mondal aff001;  Soumendra Nath Bandyopadhyay aff001;  Debabrata Goswami aff001
Působiště autorů: Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India aff001;  Center for Laser and Photonics, Indian Institute of Technology Kanpur, Kanpur, India aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223688

Souhrn

Insights into the morphology of nanoclusters would facilitate the design of nano-devices with improved optical, electrical, and magnetic responses. We have utilized optical gradient forces for the directed self-assembly of colloidal clusters using high-repetition-rate femtosecond laser pulses to delineate their structure and dynamics. We have ratified our experiments with theoretical models derived from the Langevin equation and defined the valid ranges of applicability. Our femtosecond optical tweezer-based technique characterizes the in-situ formation of hierarchical self-assembled clusters of homomers as well as heteromers by analyzing the back focal plane displacement signal. This technique is able to efficiently distinguish between nano-particles in heterogeneous clusters and is in accordance with our theory. Herein, we report results from our technique, and also develop a model to describe the mechanism of such processes where corner frequency changes. We show how the corner frequency changes enables us to recognize the structure and dynamics of the coagulation of colloidal homogeneous and heterogeneous clusters in condensed media over a broad range of nanoparticle sizes. The methods described here are advantageous, as the backscatter position-sensitive detection probes the in-situ self-assembly process while other light scattering approaches are leveraged for the characterization of isolated clusters.

Klíčová slova:

Lasers – Monomers – Nanoparticles – Optical lenses – Polystyrene – Molecular self assembly – Dimers – Microspheres


Zdroje

1. Stradner A, Sedgwick H, Cardinaux F, Poon WCK, Egelhaaf SU, Schurtenberger P. Equilibrium Cluster Formation in Concentrated Protein Solutions and Colloids. Nature. 2004; 432(7016):492–495. doi: 10.1038/nature03109 15565151

2. Camazine S, Deneubourg JL, Franks NR, Sneyd J, Bonabeau E, Theraula G. Self-Organization in Biological Systems. Princeton University Press; 2003.

3. Schilling T, Scho¨pe HJ, Oettel M, Opletal G, Snook I. Precursor-Mediated Crystallization Process in Suspensions of Hard Spheres. Phys Rev Lett. 2010; 105(2):025701. doi: 10.1103/PhysRevLett.105.025701 20867715

4. Morris AM, Watzky MA, Finke RG. Protein Aggregation Kinetics, Mechanism, and Curve-Fitting: A Review of the Literature. Biochimica et Biophysica Acta (BBA)—Proteins and Proteomics. 2009; 1794(3):375–397. doi: 10/djk6mq

5. van Aalten DM, Conn DA, de Groot BL, Berendsen HJ, Findlay JB, Amadei A.Protein Dynamics Derived from Clusters of Crystal Structures. Biophysical Journal. 1997; 73(6):2891–2896. doi: 10.1016/S0006-3495(97)78317-6 9414203

6. Bergenholtz J, Poon WCK, Fuchs M. Gelation in Model Colloid-Polymer Mixtures. Langmuir. 2003; 19(10):4493–4503. doi: 10/bdsbxs

7. Alford NM, Birchall JD, Kendall K. High-Strength Ceramics through Colloidal Control to Remove Defects. Nature. 1987; 330(6143):51–53. doi: 10/cxtjj2

8. Zhang J, Li Y, Zhang X, Yang B. Colloidal Self-Assembly Meets Nanofabrication: From Two-Dimensional Colloidal Crystals to Nanostructure Arrays. Advanced Materials. 2010; 22(38):4249–4269. doi: 10.1002/adma.201000755 20803529

9. Ozin GA, Hou K, Lotsch BV, Cademartiri L, Puzzo DP, Scotognella F, et al. Nanofabrication by Self-Assembly. Materials Today. 2009; 12(5):12{23. doi: 10/c7mc9z

10. Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, et al. Self-Assembled Plasmonic Nanoparticle Clusters. Science. 2010; 328(5982):1135–1138. doi: 10.1126/science.1187949 20508125

11. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles. Opt Lett, OL. 1986; 11(5):288–290. doi: 10/c92str

12. Zhang Y, Gu C, Schwartzberg AM, Chen S, Zhang JZ. Optical Trapping and Light-Induced Agglomeration of Gold Nanoparticle Aggregates. Phys Rev B. 2006; 73(16):165405. doi: 10/bpw2d7

13. Perry RW, Meng G, Dimiduk TG, Fung J, Manoharan VN. Real-Space Studies of the Structure and Dynamics of Self-Assembled Colloidal Clusters. Faraday Discuss. 2013; 159(0):211–234. doi: 10/gfv7xg

14. Mondal D, Goswami D. Controlling and Tracking of Colloidal Nanostructures through Two-Photon Fluorescence. Methods Appl Fluoresc. 2016; 4(4):044004. doi: 10.1088/2050-6120/4/4/044004 28192297

15. Ghimire C, Koirala D, Mathis MB, Kooijman EE, Mao H. Controlled Particle Collision Leads to Direct Observation of Docking and Fusion of Lipid Droplets in an Optical Trap. Langmuir. 2014; 30(5):1370–1375. doi: 10.1021/la404497v 24447288

16. Berg-S_rensen K, Flyvbjerg H. Power Spectrum Analysis for Optical Tweezers. Review of Scientific Instruments. 2004; 75(3):594–612. doi: 10/cbss66

17. de Nijs B, Dussi S, Smallenburg F, Meeldijk JD, Groenendijk DJ, Filion L, et al. Entropy-Driven Formation of Large Icosahedral Colloidal Clusters by Spherical Confinement. Nature Materials. 2015; 14(1):56–60. doi: 10.1038/nmat4072 25173580

18. Hansen PM, Dreyer JK, Ferkinghoff-Borg J, Oddershede L. Novel Optical and Statistical Methods Reveal Colloid-Wall Interactions Inconsistent with DLVO and Lifshitz Theories. Journal of Colloid and Interface Science. 2005; 287(2):561–571. doi: 10.1016/j.jcis.2005.01.098 15925623

19. Dong J, Castro CE, Boyce MC, Lang MJ, Lindquist S. Optical Trapping with High Forces Reveals Unexpected Behaviors of Prion Fibrils. Nat Struct Mol Biol. 2010; 17(12):1422–1430. doi: 10.1038/nsmb.1954 21113168

20. Chen A, Li SW, Sang FN, Zeng HB, Xu JH. Interactions between Micro-Scale Oil Droplets in Aqueous Surfactant Solution Determined Using Optical Tweezers. Journal of Colloid and Interface Science. 2018; 532:128–135. doi: 10.1016/j.jcis.2018.07.116 30077826

21. Tolić-Nørrelykke IM, Munteanu EL, Thon G, Oddershede L, Berg-S_rensen K. Anomalous Diffusion in Living Yeast Cells. Phys Rev Lett. 2004; 93(7):078102. doi: 10.1103/PhysRevLett.93.078102 15324280

22. Russel WB, Russel WB, Saville DA, Schowalter WR. Colloidal Dispersions. Cambridge University Press; 1991.

23. Pantina JP, Furst EM. Directed Assembly and Rupture Mechanics of Colloidal Aggregates. Langmuir. 2004; 20(10):3940–3946. doi: 10/btmtnz 15969383

24. Zoica Dinu C, Chakrabarty T, Lunsford E, Mauer C, Plewa J, S Dordick J, et al. Optical Manipulation of Microtubules for Directed Biomolecule Assembly. Soft Matter. 2009; 5(20):3818–3822. doi: 10/brsq8p

25. Gittes F, Schmidt CF. Interference Model for Back-Focal-Plane Displacement Detection in Optical Tweezers. Opt Lett, OL. 1998; 23(1):7–9. doi: 10/bjwpvd

26. Tolić-Nørrelykke SF, Schäffer E, Howard J, Pavone FS, Jülicher F, Flyvbjerg H. Calibration of Optical Tweezers with Positional Detection in the Back Focal Plane. Review of Scientific Instruments. 2006; 77(10):103101. doi: 10/dzq7fk

27. Leunissen ME, Dreyfus R, Sha R, Wang T, Seeman NC, Pine DJ, et al. Towards Self-Replicating Materials of DNA-Functionalized Colloids. Soft Matter. 2009; 5(12):2422–2430. doi: 10/cj2sn9

28. Dreyfus R. Aggregation-Disaggregation Transition of DNA-Coated Colloids: Experiments and Theory. Phys Rev E. 2010; 81(4). doi: 10/dv9dh3

29. Wang MC, Uhlenbeck GE. On the Theory of the Brownian Motion II. Rev Mod Phys. 1945; 17(2–3):323–342. doi: 10/dpzg7k

30. Gu H, Yang Z, Gao J, Chang CK, Xu B. Heterodimers of Nanoparticles: Formation at a Liquid-Liquid Interface and Particle-Specific Surface Modification by Functional Molecules. J Am Chem Soc. 2005; 127(1):34–35. doi: 10.1021/ja045220h 15631435

31. Shitamichi Y, Ichikawa M, Kimura Y. Mechanical Properties of a Giant Liposome Studied Using Optical Tweezers. Chemical Physics Letters. 2009; 479(4):274–278. doi: 10/dfqrp5

32. Pauzauskie PJ, Yang P. Nanowire Photonics. Materials Today. 2006; 9(10):36–45. doi: 10/cs3g73

33. Klein MW, Enkrich C, Wegener M, Linden S. Second-Harmonic Generation from Magnetic Metamaterials. Science. 2006; 313(5786):502–504. doi: 10.1126/science.1129198 16873661

34. Jauffred L, Oddershede LB. Two-Photon Quantum Dot Excitation during Optical Trapping. Nano Lett. 2010; 10(5):1927–1930. doi: 10.1021/nl100924z 20402477

35. Hale GM, Querry MR. Optical Constants of Water in the 200-Nm to 200-Mm Wavelength Region. Appl Opt, AO. 1973; 12(3):555–563. doi: 10/bh84kv

36. Mondal D, Mathur P, Goswami D. Precise Control and Measurement of Solid-Liquid Interfacial Temperature and Viscosity Using Dual-Beam Femtosecond Optical Tweezers in the Condensed Phase. Physical Chemistry Chemical Physics. 2016; 18(37):25823–25830. doi: 10.1039/c6cp03093a 27523570

37. Happel J, Brenner H. Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media. Springer Science & Business Media; 2012.

38. Reif F. Fundamentals of Statistical and Thermal Physics. Waveland Press; 2009.

39. Chandrasekhar S. Stochastic Problems in Physics and Astronomy. Rev Mod Phys. 1943; 15(1):1–89. doi: 10/c7kt2q

40. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press; 2007.

41. Simmons RM, Finer JT, Chu S, Spudich JA. Quantitative Measurements of Force and Displacement Using an Optical Trap. Biophysical Journal. 1996; 70(4):1813–1822. doi: 10.1016/S0006-3495(96)79746-1 8785341

42. Tolić-Nørrelykke IM, Berg-Sørensen K, Flyvbjerg H. MatLab Program for Precision Calibration of Optical Tweezers. Computer Physics Communications. 2004; 159(3):225–240. doi: 10/fgkfzg

43. Hansen PM, Bhatia VK, Harrit N, Oddershede L. Expanding the Optical Trapping Range of Gold Nanoparticles. Nano Lett. 2005; 5(10):1937–1942. doi: 10.1021/nl051289r 16218713

44. Chiu DT, Zare RN. Biased Diffusion, Optical Trapping, and Manipulation of Single Molecules in Solution. J Am Chem Soc. 1996; 118(27):6512–6513. doi: 10/fctdcd

45. Zwanzig R, Bixon M. Hydrodynamic Theory of the Velocity Correlation Function. Phys Rev A. 1970; 2(5):2005–2012. doi: 10/c4w6sh

46. Xu X, Lin B, Cui B, Dinner AR, Rice SA. Spreading of Colloid Clusters in a Quasi-One-Dimensional Channel. J Chem Phys. 2010; 132(8):084902. doi: 10.1063/1.3330414 20192315

47. Mondal D, Goswami D. Sensitive in Situ Nanothermometer Using Femtosecond Optical Tweezers. JNP. 2016; 10(2):026013. doi: 10/f832c9

48. Fita P, Punzi A, Vauthey E. Local Viscosity of Binary Water+Glycerol Mixtures at Liquid/Liquid Interfaces Probed by Time-Resolved Surface Second Harmonic Generation. J Phys Chem C. 2009; 113(48):20705–20712. doi: 10/fjkvrb

49. Mondal D, Bandyopadhyay SN, Mathur P, Goswami D. On-the-Fly Calibrated Measure and Remote Control of Temperature and Viscosity at Nanoscale. ACS Omega. 2018; 3(9):12304–12311. doi: 10.1021/acsomega.8b01572 31459304

50. Liu TH, Chiang WY, Usman A, Masuhara H. Optical Trapping Dynamics of a Single Polystyrene Sphere: Continuous Wave versus Femtosecond Lasers. J Phys Chem C. 2016; 120(4):2392–2399. doi: 10/gf85zr

51. Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA. The Nanoparticle-Protein Complex as a Biological Entity; a Complex Fluids and Surface Science Challenge for the 21st Century. Advances in Colloid and Interface. Science. 2007;134–135:167–174. doi: 10.1016/j.cis.2007.04.021 17574200

52. Dusak P, Mertelj A, Kralj S, Makovec D. Controlled Heteroaggregation of Two Types of Nanoparticles in an Aqueous Suspension. Journal of Colloid and Interface Science. 2015; 438:235–243. doi: 10.1016/j.jcis.2014.09.086 25454447


Článek vyšel v časopise

PLOS One


2019 Číslo 10