Tissue-specific changes in size and shape of the ligaments and tendons of the porcine knee during post-natal growth


Autoři: Stephanie G. Cone aff001;  Hope E. Piercy aff001;  Emily P. Lambeth aff001;  Hongyu Ru aff003;  Jorge A. Piedrahita aff002;  Jeffrey T. Spang aff004;  Lynn A. Fordham aff005;  Matthew B. Fisher aff001
Působiště autorů: Department of Biomedical Engineering, North Carolina State University and the University of North Carolina at Chapel Hill, Raleigh, North Carolina, United States of America aff001;  Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America aff002;  Department of Biostatistics, North Carolina State University, Raleigh, North Carolina, United States of America aff003;  Department of Orthopedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America aff004;  Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America aff005
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0219637

Souhrn

Prior studies have analyzed growth of musculoskeletal tissues between species or across body segments; however, little research has assessed the differences in similar tissues within a single joint. Here we studied changes in the length and cross-sectional area of four ligaments and tendons, (anterior cruciate ligament, patellar tendon, medial collateral ligament, lateral collateral ligament) in the tibiofemoral joint of female Yorkshire pigs through high-field magnetic resonance imaging throughout growth. Tissue lengths increased by 4- to 5-fold from birth to late adolescence across the tissues while tissue cross-sectional area increased by 10–20-fold. The anterior cruciate ligament and lateral collateral ligament showed allometric growth favoring change in length over change in cross-sectional area while the patellar tendon and medial collateral ligament grow in an isometric manner. Additionally, changes in the length and cross-sectional area of the anterior cruciate ligament did not increase as much as in the other ligaments and tendon of interest. Overall, these findings suggest that musculoskeletal soft tissue morphometry can vary within tissues of similar structure and within a single joint during post-natal growth.

Klíčová slova:

Age groups – Body limbs – Ligaments – Magnetic resonance imaging – Morphometry – Pig models – Skeletal joints – Tendons


Zdroje

1. Done SL. Fetal and neonatal bone health: update on bone growth and manifestations in health and disease. Pediatr Radiol. 2012;42 Suppl 1:S158–76. doi: 10.1007/s00247-011-2251-8 22395728.

2. Ferretti M, Levicoff EA, Macpherson TA, Moreland MS, Cohen M, Fu FH. The fetal anterior cruciate ligament: an anatomic and histologic study. Arthroscopy. 2007;23(3):278–83. Epub 2007/03/14. doi: 10.1016/j.arthro.2006.11.006 17349471.

3. Felsenthal N, Zelzer E. Mechanical regulation of musculoskeletal system development. Development. 2017;144(23):4271–83. doi: 10.1242/dev.151266 29183940.

4. Nguyen PK, Pan XS, Li J, Kuo CK. Roadmap of molecular, compositional, and functional markers during embryonic tendon development. Connect Tissue Res. 2018;59(5):495–508. doi: 10.1080/03008207.2018.1511710 30231651.

5. Liu W, Watson SS, Lan Y, Keene DR, Ovitt CE, Liu H, et al. The atypical homeodomain transcription factor Mohawk controls tendon morphogenesis. Mol Cell Biol. 2010;30(20):4797–807. doi: 10.1128/MCB.00207-10 20696843; PubMed Central PMCID: PMC2950547.

6. Mienaltowski MJ, Birk DE. Mouse models in tendon and ligament research. Adv Exp Med Biol. 2014;802:201–30. Epub 2014/01/21. doi: 10.1007/978-94-007-7893-1_13 24443029.

7. Huebner KD, O'Brien EJ, Heard BJ, Chung M, Achari Y, Shrive NG, et al. Post-natal molecular adaptations in anteromedial and posterolateral bundles of the ovine anterior cruciate ligament: one structure with two parts or two distinct ligaments? Connect Tissue Res. 2012;53(4):277–84. doi: 10.3109/03008207.2011.637652 22148917.

8. Tuca M, Hayter C, Potter H, Marx R, Green DW. Anterior cruciate ligament and intercondylar notch growth plateaus prior to cessation of longitudinal growth: an MRI observational study. Knee Surg Sports Traumatol Arthrosc. 2016;24(3):780–7. doi: 10.1007/s00167-016-4021-5 26860103.

9. Marturano JE, Arena JD, Schiller ZA, Georgakoudi I, Kuo CK. Characterization of mechanical and biochemical properties of developing embryonic tendon. Proc Natl Acad Sci U S A. 2013;110(16):6370–5. doi: 10.1073/pnas.1300135110 23576745; PubMed Central PMCID: PMC3631620.

10. Lee AH, Elliott DM. Comparative multi-scale hierarchical structure of the tail, plantaris, and Achilles tendons in the rat. J Anat. 2018. doi: 10.1111/joa.12913 30484871.

11. Cone SG, Simpson SG, Piedrahita JA, Fordham LA, Spang JT, Fisher MB. Orientation changes in the cruciate ligaments of the knee during skeletal growth: A porcine model. J Orthop Res. 2017;35(12):2725–32. doi: 10.1002/jor.23594 28471537; PubMed Central PMCID: PMC5671372.

12. Huang S, Ingber DE. The structural and mechanical complexity of cell-growth control. Nature cell biology. 1999;1(5):E131. doi: 10.1038/13043 10559956

13. Thompson DW. On growth and form. Cambridge: Cambridge University Press. 1945.

14. Huxley JS, Teissier G. Terminology of relative growth. Nature. 1936;137(3471):780.

15. Huxley JS. Relative Growth and Form Transformation. Proc R Soc Ser B-Bio. 1950;137(889):465–9. doi: 10.1098/rspb.1950.0055 WOS:A1950UJ62300006.

16. Brody S. Bioenergetics and growth: Reinhold Publishing Corporation: New York; 1945.

17. McMahon TA. Allometry and biomechanics: limb bones in adult ungulates. The American Naturalist. 1975;109(969):547–63.

18. Alexander R, Jayes A, Maloiy G, Wathuta E. Allometry of the limb bones of mammals from shrews (Sorex) to elephant (Loxodonta). Journal of Zoology. 1979;189(3):305–14.

19. Muller P, Dahners LE. A study of ligamentous growth. Clin Orthop Relat R. 1988;229:274–7.

20. Liu MF, He P, Aherne FX, Berg RT. Postnatal limb bone growth in relation to live weight in pigs from birth to 84 days of age. J Anim Sci. 1999;77(7):1693–701. doi: 10.2527/1999.7771693x 10438014.

21. Xerogeanes JW, Fox RJ, Takeda Y, Kim HS, Ishibashi Y, Carlin GJ, et al. A functional comparison of animal anterior cruciate ligament models to the human anterior cruciate ligament. Ann Biomed Eng. 1998;26(3):345–52. doi: 10.1114/1.91 9570217.

22. Proffen BL, McElfresh M, Fleming BC, Murray MM. A comparative anatomical study of the human knee and six animal species. Knee. 2012;19(4):493–9. doi: 10.1016/j.knee.2011.07.005 21852139; PubMed Central PMCID: PMC3236814.

23. Cone SG, Warren PB, Fisher MB. Rise of the Pigs: Utilization of the Porcine Model to Study Musculoskeletal Biomechanics and Tissue Engineering During Skeletal Growth. Tissue Eng Part C Methods. 2017;23(11):763–80. doi: 10.1089/ten.TEC.2017.0227 28726574; PubMed Central PMCID: PMC5689129.

24. Reiland S. Growth and skeletal development of the pig. Acta Radiol Suppl. 1978;358:15–22. 233594.

25. FederationofAnimalScienceSocieties. Guide for the Care and Use of Agricultural Animals in Teaching and Research, Third Edition. Champaign, IL2010.

26. Leary SL, Underwood W, Anthony R, Cartner S, Corey D, Grandin T, et al., editors. AVMA guidelines for the euthanasia of animals: 2013 edition2013: American Veterinary Medical Association Schaumburg, IL.

27. Doube M, Kłosowski MM, Wiktorowicz-Conroy AM, Hutchinson JR, Shefelbine SJ. Trabecular bone scales allometrically in mammals and birds. Proceedings of the Royal Society of London B: Biological Sciences. 2011:rspb20110069.

28. Ruff CB. Body size, body shape, and long bone strength in modern humans. J Hum Evol. 2000;38(2):269–90. doi: 10.1006/jhev.1999.0322 10656779.

29. Woo SL, Ohland KJ, Weiss JA. Aging and sex-related changes in the biomechanical properties of the rabbit medial collateral ligament. Mech Ageing Dev. 1990;56(2):129–42. Epub 1990/11/01. doi: 10.1016/0047-6374(90)90004-y 2290352.

30. Woo SL, Orlando CA, Gomez MA, Frank CB, Akeson WH. Tensile properties of the medial collateral ligament as a function of age. J Orthop Res. 1986;4(2):133–41. Epub 1986/01/01. doi: 10.1002/jor.1100040201 3712122.

31. Lima FM, Debieux P, Astur DC, Luzo MVM, Cohen M, Cardoso FN, et al. The development of the anterior cruciate ligament in the paediatric population. Knee Surg Sports Traumatol Arthrosc. 2019. Epub 2019/01/24. doi: 10.1007/s00167-019-05349-x 30671598.

32. Davidson SP, McLean SG. Effects of maturation on combined female muscle strength and ACL structural factors. J Sci Med Sport. 2016;19(7):553–8. doi: 10.1016/j.jsams.2015.07.016 26387610.

33. Zember JS, Rosenberg ZS, Kwong S, Kothary SP, Bedoya MA. Normal Skeletal Maturation and Imaging Pitfalls in the Pediatric Shoulder. Radiographics. 2015;35(4):1108–22. Epub 2015/07/15. doi: 10.1148/rg.2015140254 26172355.

34. Tschauner S, Sorantin E, Singer G, Eberl R, Weinberg AM, Schmidt P, et al. The origin points of the knee collateral ligaments: an MRI study on paediatric patients during growth. Knee Surg Sports Traumatol Arthrosc. 2016;24(1):18–25. Epub 2014/04/20. doi: 10.1007/s00167-014-2991-8 24744174.

35. Koob TJ, Pringle D, Gedbaw E, Meredith J, Berrios R, Kim HK. Biomechanical properties of bone and cartilage in growing femoral head following ischemic osteonecrosis. J Orthop Res. 2007;25(6):750–7. Epub 2007/02/24. doi: 10.1002/jor.20350 17318897.

36. Haut RC, Wei F. Biomechanical Studies on Patterns of Cranial Bone Fracture Using the Immature Porcine Model. J Biomech Eng. 2017;139(2). Epub 2016/08/19. doi: 10.1115/1.4034430 27537363.

37. Sun Z, Kennedy KS, Tee BC, Damron JB, Allen MJ. Establishing a critical-size mandibular defect model in growing pigs: characterization of spontaneous healing. J Oral Maxillofac Surg. 2014;72(9):1852–68. Epub 2014/05/13. doi: 10.1016/j.joms.2014.02.024 24815793.

38. Goldblatt JP, Fitzsimmons SE, Balk E, Richmond JC. Reconstruction of the anterior cruciate ligament: meta-analysis of patellar tendon versus hamstring tendon autograft. Arthroscopy. 2005;21(7):791–803. doi: 10.1016/j.arthro.2005.04.107 16012491.

39. Collins SL, Layde P, Guse CE, Schlotthauer AE, Van Valin SE. The Incidence and Etiology of Anterior Cruciate Ligament Injuries in Patients under the Age of 18 in the State of Wisconsin. Pediat Therapeut. 2014;4(196).

40. Dodwell ER, Lamont LE, Green DW, Pan TJ, Marx RG, Lyman S. 20 years of pediatric anterior cruciate ligament reconstruction in New York State. Am J Sports Med. 2014;42(3):675–80. doi: 10.1177/0363546513518412 24477820.

41. Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ, Kaufman KR. Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med. 1994;22(5):632–44. doi: 10.1177/036354659402200511 7810787.

42. Millett PJ, Willis AA, Warren RF. Associated injuries in pediatric and adolescent anterior cruciate ligament tears: does a delay in treatment increase the risk of meniscal tear? Arthroscopy. 2002;18(9):955–9. doi: 10.1053/jars.2002.36114 12426537.

43. Queen RM. Infographic: ACL injury reconstruction and recovery. Bone Joint Res. 2017;6(11):621–2. doi: 10.1302/2046-3758.611.BJR-2017-0330 29122748; PubMed Central PMCID: PMC5717074.

44. Webster KE, Feller JA, Kimp AJ, Whitehead TS. Revision Anterior Cruciate Ligament Reconstruction Outcomes in Younger Patients: Medial Meniscal Pathology and High Rates of Return to Sport Are Associated With Third ACL Injuries. Am J Sports Med. 2018;46(5):1137–42. doi: 10.1177/0363546517751141 29382207.

45. Webster KE, Feller JA, Leigh WB, Richmond AK. Younger patients are at increased risk for graft rupture and contralateral injury after anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(3):641–7. doi: 10.1177/0363546513517540 24451111.

46. Shea KG, Pfeiffer R, Wang JH, Curtin M, Apel PJ. Anterior cruciate ligament injury in pediatric and adolescent soccer players: an analysis of insurance data. J Pediatr Orthop. 2004;24(6):623–8. doi: 10.1097/00004694-200411000-00005 15502559.


Článek vyšel v časopise

PLOS One


2019 Číslo 10