Agreement between clinical and non-clinical digital manometer for assessing maximal respiratory pressures in healthy subjects

Autoři: Rodrigo Torres-Castro aff001;  Nicolás Sepúlveda-Cáceres aff001;  Rodrigo Garrido-Baquedano aff001;  Marisol Barros-Poblete aff001;  Matías Otto-Yáñez aff003;  Luis Vasconcello aff001;  Roberto Vera-Uribe aff001;  Homero Puppo aff001;  Guilherme Fregonezi aff004
Působiště autorů: Departmento de Kinesiología, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile aff001;  Programa Nacional de Ventilación Mecánica No Invasiva, Ministerio de Salud, Santiago de Chile, Chile aff002;  Escuela de Kinesiología, Universidad Autónoma de Chile, Santiago de Chile, Chile aff003;  PneumoCardioVascular Lab, Departamento de Fisioterapia & Hospital Universitário Onofre Lopes - Empresa Brasileira de Serviços Hospitalares (EBSERH), Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil aff004
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224357


Measurement of respiratory muscles strength such as maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP) are used to detect, diagnose and treat respiratory weakness. However, devices used for these measurements are not widely available and are costly. Currently, the use of a digital manometer is recommended. In industry, several inexpensive devices are available, but these have not been validated for clinical use. Our objective was to determine the agreement between maximal respiratory pressures obtained with a clinical digital manometer and that with a non-clinical digital manometer in healthy volunteers. We assessed the height, weight, lung function, MIP, and MEP of healthy volunteers. To compare pressures obtained by each type of digital manometer, a parallel approach configuration was used. The agreement was measured with the Intraclass Coefficient Correlation (ICC) and the Bland-Altman plot. Twenty-seven participants (14 men) were recruited with a median age of 22 (range: 21–23) years. Each participant underwent three measurements to give a total of 81 measurements. The mean MIPs were 90.8 ± 26.4 (SEM 2.9) and 91.1 ± 26.4 (SEM 2.9) cmH2O for the clinical and non-clinical digital manometers, respectively. The mean MEPs were 113.8 ± 40.4 (SEM 4.5) and 114.5 ± 40.5 (SEM 4.5) cmH2O for the clinical and non-clinical digital manometers, respectively. We obtained an ICC of 0.998 (IC 0.997–0.999) for MIP and 0.999 (IC 0.998–0.999) for MEP. There is a high agreement in the values obtained for MIP and MEP between clinical and non-clinical digital manometers in healthy volunteers. Further validation at lower pressures and safety profiling among human subjects is needed.

Klíčová slova:

Cardiac muscles – Chronic obstructive pulmonary disease – Medical devices and equipment – Muscle analysis – Pulmonary function – Pulmonology – Spirometry – Transducers


1. American Thoracic Society/European Respiratory Society. ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166:518–624 doi: 10.1164/rccm.166.4.518 12186831

2. Verissimo P, Timenetsky KT, Casalaspo TJA, Gonçalves LHR, Yang ASY, Eid RC. High prevalence of respiratory muscle weakness in hospitalized acute heart failure elderly patients. PLOS one. 2015;10(2):e0118218. doi: 10.1371/journal.pone.0118218 25671566

3. Aslan GK, Akinci B, Yeldan I, Okumus G. Respiratory muscle strength in patients with pulmonary hypertension: The relationship with exercise capacity, physical activity level, and quality of life. Clin Respir J. 2018;12(2):699–705. doi: 10.1111/crj.12582 27860259

4. Wolpat A, Lima FV, Silva FM, Tochetto M, de Freitas A, Grandi T, et al. Association between inspiratory muscle weakness and slowed oxygen uptake kinetics in patients with chronic obstructive pulmonary disease. Appl Physiol Nutr Metab. 2017;42(12):1239–1246 doi: 10.1139/apnm-2016-0568 28750180

5. Schoser B, Fong E, Geberhiwot T, Hughes D, Kissel JT, Madathil SC, et al. Maximum inspiratory pressure as a clinically meaningful trial endpoint for neuromuscular diseases: a comprehensive review of the literature. Orphanet J Rare Dis. 2017;12(1):52 doi: 10.1186/s13023-017-0598-0 28302142

6. Rodrigues A, Da Silva ML, Berton DC, Cipriano G Jr, Pitta F, O´Donell DE, et al. Maximal Inspiratory Pressure: Does the Choice of Reference Values Actually Matter? Chest. 2017;152(1):32–39 doi: 10.1016/j.chest.2016.11.045 27940276

7. Aldrich TK, Spiro P. Maximal inspiratory pressure: does reproducibility indicate full effort? Thorax. 1995;50(1):40–43. doi: 10.1136/thx.50.1.40 7886647

8. Hamnegard C, Wragg S, Kyroussis D, Aquilina R, Moxham J, Green M. Portable measurement of maximum mouth pressures. Eur Respir J. 1994;7(2):398–401 doi: 10.1183/09031936.94.07020398 8162993

9. Kottner J, Audigé L, Brorson S, Donner A, Gajewski BJ, Hróbjartsson A, et al. Guidelines for reporting reliability and agreement studies (GRRAS) were proposed. Int J Nurs Stud. 2011;48(6):661–671. doi: 10.1016/j.ijnurstu.2011.01.016 21514934

10. American Thoracic Society/European Respiratory Society. ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166(4):518–624 doi: 10.1164/rccm.166.4.518 12186831

11. Black LF, Hyatt RE. Maximal respiratory pressures: normal values and relationship to age and sex. Am Rev Respir Dis. 1969;99(5): 696–702. doi: 10.1164/arrd.1969.99.5.696 5772056

12. Fiz J, Montserrat JM, Picado C, Plaza V, Agusti-Vidal A. How many manoeuvres should be done to measure maximal inspiratory mouth pressure in patients with chronic airflow obstruction?. Thorax. 1989;44(5):419–421 doi: 10.1136/thx.44.5.419 2763242

13. Knudson RJ, Lebowitz MD, Holberg CJ, Burrows B. Changes in the normal maximal expiratory flow-volume curve with growth and aging 1–3. Am Rev Respir Dis. 1983;127(6):725–734 doi: 10.1164/arrd.1983.127.6.725 6859656

14. Liao JJ. Sample size calculation for an agreement study. Pharm Stats. 2010;9(2):125–132.

15. Cortés-Reyes É, Rubio-Romero JA, Gaitán-Duarte H. Métodos estadísticos de evaluación de la concordancia y la reproducibilidad de pruebas diagnósticas. Rev Colomb Obst Ginecol. 2010;61(3):247–255

16. da C Melo JB, Campos TF, de Freitas DA, de O Borja R, do Nascimento RA, de Mendonça KMPP. Comparison between maximal respiratory pressures obtained from digital and analog manovacuometer in healthy children. J Respir CardioVasc Phys Ther. 2013;1(2):44–50.

17. Dimitriadis Z, Kapreli E, Konstantinidou I, Oldham J, Strimpakos N. Test/retest reliability of maximum mouth pressure measurements with the MicroRPM in healthy volunteers. Respir Care. 2011;56(6):776–782 doi: 10.4187/respcare.00783 21310113

18. Jalan NS, Daftari SS, Retharekar SS, Rairikar SA, Shyam AM, Sancheti PK. Intra-and inter-rater reliability of maximum inspiratory pressure measured using a portable capsule-sensing pressure gauge device in healthy adults. Can J Respir Ther. 2015;51(2):39–42 26089737

19. Maillard JO, Burdet L, Van Melle G, Fitting J. Reproducibility of twitch mouth pressure, sniff nasal inspiratory pressure, and maximal inspiratory pressure. Eur Respir J. 1998;11(4):901–905 doi: 10.1183/09031936.98.11040901 9623695

20. Larson JL, Covey MK, Vitalo CA, Alex CG, Patel M, Kim MJ. Maximal inspiratory pressure: learning effect and test-retest reliability in patients with chronic obstructive pulmonary disease. Chest. 1993;104(2):448–453 doi: 10.1378/chest.104.2.448 8339633

Článek vyšel v časopise


2019 Číslo 10