Extracellular vesicles nanoarray technology: Immobilization of individual extracellular vesicles on nanopatterned polyethylene glycol-lipid conjugate brushes


Autoři: Shusuke Yokota aff001;  Hiromi Kuramochi aff001;  Kyohei Okubo aff001;  Akiko Iwaya aff001;  Shoichi Tsuchiya aff002;  Takanori Ichiki aff001
Působiště autorů: Department of Materials Engineering, School of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan aff001;  Innovation Center of NanoMedicine, Kawasaki, Kanagawa, Japan aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224091

Souhrn

Arraying individual extracellular vesicles (EVs) on a chip is expected one of the promising approaches for investigating their inherent properties. In this study, we immobilized individual EVs on a surface using a nanopatterned tethering chip-based versatile platform. A microfluidic device was used to ensure soft, reproducible exposure of the EVs over the whole chip surface. The device is incorporated with a high-density nanoarray chip patterned with 200-nm diameter nanospots composed of polyethylene glycol (PEG)-lipid conjugate brushes. We present a procedure adopted for fabricating high-density PEG-lipid modified nanospots (200 nmϕ, 5.0 × 105 spots/mm2 in 2 × 2 mm2 area). This procedure involves nanopatterning using electron beam lithography, followed by multistep selective chemical modification. Aqueous treatment of a silane coupling agent, used as a linker between PEG-lipid molecules and the silicon surface, was the key step that enabled surface modification using a nanopatterned resist film as a mask. The nanoarray chip was removed from the device for subsequent measurements such as atomic force microscopy (AFM). We developed a prototype device and individually immobilized EVs derived from different cell lines (Sk-Br-3 and HEK293) on tethering nanospots. We characterized EV's morphology using AFM and showed the possibility of evaluating the deformability of EVs using the aspect ratio as an indicator.

Klíčová slova:

Atomic force microscopy – Flow rate – Microfluidics – MicroRNAs – Scanning electron microscopy – Thin films – Vesicles – Nanopatterning


Zdroje

1. Théry C, Zitvogel L, Amigorena S. Exosomes: Composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79. doi: 10.1038/nri855 12154376

2. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of micrornas in living cells. J Biol Chem. 2010;285(23):17442–52. doi: 10.1074/jbc.M110.107821 20353945

3. Boulanger CM, Loyer X, Rautou P-E, Amabile N. Extracellular vesicles in coronary artery disease. Nat Rev Cardiol. 2017;14(5):259–72. doi: 10.1038/nrcardio.2017.7 28150804

4. Chia BS, Low YP, Wang Q, Li P, Gao Z. Advances in exosome quantification techniques. Trends Anal Chem. 2017;86(Supplement C):93–106.

5. Croce CM. Causes and consequences of microrna dysregulation in cancer. Nat Rev Genet. 2009;10:704. doi: 10.1038/nrg2634 19763153

6. Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T. Neutral sphingomyelinase 2 (nsmase2)-dependent exosomal transfer of angiogenic micrornas regulate cancer cell metastasis. J Biol Chem. 2013;288(15):10849–59. doi: 10.1074/jbc.M112.446831 23439645

7. Webber JP, Spary LK, Sanders AJ, Chowdhury R, Jiang WG, Steadman R, et al. Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene. 2014;34:290. doi: 10.1038/onc.2013.560 24441045

8. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, et al. Micrornas bind to toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci. 2012;109(31):E2110. doi: 10.1073/pnas.1209414109 22753494

9. Syn N, Wang L, Sethi G, Thiery J-P, Goh B-C. Exosome-mediated metastasis: From epithelial–mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci. 2016;37(7):606–17. doi: 10.1016/j.tips.2016.04.006 27157716

10. Fujita Y, Yoshioka Y, Ochiya T. Extracellular vesicle transfer of cancer pathogenic components. Cancer Sci. 2016;107(4):385–90. doi: 10.1111/cas.12896 26797692

11. Nolte-'t Hoen EN, van der Vlist EJ, Aalberts M, Mertens HC, Bosch BJ, Bartelink W, et al. Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine. 2012;8(5):712–20. doi: 10.1016/j.nano.2011.09.006 22024193

12. Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, et al. Analysis of escrt functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126(Pt 24):5553–65. doi: 10.1242/jcs.128868 24105262

13. Koliha N, Wiencek Y, Heider U, Jungst C, Kladt N, Krauthauser S, et al. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles. J Extracell Vesicles. 2016;5:29975. doi: 10.3402/jev.v5.29975 26901056

14. Willms E, Johansson HJ, Mager I, Lee Y, Blomberg KE, Sadik M, et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep. 2016;6:22519. doi: 10.1038/srep22519 26931825

15. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 2016;113(8):E968–77. doi: 10.1073/pnas.1521230113 26858453

16. Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89. doi: 10.1146/annurev-cellbio-101512-122326 25288114

17. Sharma S, Gillespie BM, Palanisamy V, Gimzewski JK. Quantitative nanostructural and single-molecule force spectroscopy biomolecular analysis of human-saliva-derived exosomes. Langmuir. 2011;27(23):14394–400. doi: 10.1021/la2038763 22017459

18. Sharma S, Das K, Woo J, Gimzewski JK. Nanofilaments on glioblastoma exosomes revealed by peak force microscopy. J R Soc Interface. 2014;11(92):20131150. doi: 10.1098/rsif.2013.1150 24402921

19. Paolini L, Zendrini A, Noto GD, Busatto S, Lottini E, Radeghieri A, et al. Residual matrix from different separation techniques impacts exosome biological activity. Sci Rep. 2016;6:23550. doi: 10.1038/srep23550 27009329

20. Helwa I, Cai J, Drewry MD, Zimmerman A, Dinkins MB, Khaled ML, et al. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLOS ONE. 2017;12(1):e0170628. doi: 10.1371/journal.pone.0170628 28114422

21. Akagi T, Kato K, Kobayashi M, Kosaka N, Ochiya T, Ichiki T. On-chip immunoelectrophoresis of extracellular vesicles released from human breast cancer cells. PLOS ONE. 2015;10(4):e0123603. doi: 10.1371/journal.pone.0123603 25928805

22. Park J, Hwang M, Choi B, Jeong H, Jung J-h, Kim HK, et al. Exosome classification by pattern analysis of surface-enhanced raman spectroscopy data for lung cancer diagnosis. Anal Chem. 2017;89(12):6695–701. doi: 10.1021/acs.analchem.7b00911 28541032

23. Smith ZJ, Lee C, Rojalin T, Carney RP, Hazari S, Knudson A, et al. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. J Extracell Vesicles. 2015;4(1):28533.

24. Friedrich R, Block S, Alizadehheidari M, Heider S, Fritzsche J, Esbjörner EK, et al. A nano flow cytometer for single lipid vesicle analysis. Lab Chip. 2017;17(5):830–41. doi: 10.1039/c6lc01302c 28128381

25. Christensen SM, Stamou DG. Sensing-applications of surface-based single vesicle arrays. Sensors. 2010;10(12).

26. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270(5235):467. doi: 10.1126/science.270.5235.467 7569999

27. Templin MF, Stoll D, Schrenk M, Traub PC, Vöhringer CF, Joos TO. Protein microarray technology. Drug Discov Today. 2002;7(15):815–22. doi: 10.1016/s1359-6446(00)01910-2 12546969

28. Yamamura S, Kishi H, Tokimitsu Y, Kondo S, Honda R, Rao SR, et al. Single-cell microarray for analyzing cellular response. Anal Chem. 2005;77(24):8050–6. doi: 10.1021/ac0515632 16351155

29. Ito K, Ogawa Y, Yokota K, Matsumura S, Minamisawa T, Suga K, et al. Host cell prediction of exosomes using morphological features on solid surfaces analyzed by machine learning. J Phys Chem B. 2018;122(23):6224–35. doi: 10.1021/acs.jpcb.8b01646 29771528

30. Otsuka H, Nagasaki Y, Kataoka K. Surface characterization of functionalized polylactide through the coating with heterobifunctional poly(ethylene glycol)/polylactide block copolymers. Biomacromolecules. 2000;1(1):39–48. 11709841

31. Kato K, Umezawa K, Funeriu DP, Miyake M, Miyake J, Nagamune T. Immobilized culture of nonadherent cells on an oleyl poly(ethylene glycol) ether-modified surface. BioTechniques. 2003;35(5):1014–8, 20–1. doi: 10.2144/03355rr01 14628675

32. Yoshina-Ishii C, Miller GP, Kraft ML, Kool ET, Boxer SG. General method for modification of liposomes for encoded assembly on supported bilayers. J Am Chem Soc. 2005;127(5):1356–7. doi: 10.1021/ja043299k 15686351

33. Pfeiffer I, Höök F. Bivalent cholesterol-based coupling of oligonucletides to lipid membrane assemblies. J Am Chem Soc. 2004;126(33):10224–5. doi: 10.1021/ja048514b 15315417

34. Chan Y-HM, van Lengerich B, Boxer SG. Effects of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides. Proc Natl Acad Sci. 2009.

35. Kobayashi M, Sasaki M, Kosaka N, Ochiya T, Akagi T, Ichiki T. Development of microfluidic devices with polyethylene glycol-lipid-modified adsorption surface for high-throughput isolation of exosomes from human serum. Proc MicroTAS 2013. 2013:44–6.

36. Dimitrievski K. Deformation of adsorbed lipid vesicles as a function of vesicle size. Langmuir. 2010;26(5):3008–11. doi: 10.1021/la904743d 20104868

37. Guha Thakurta S, Subramanian A. Fabrication of dense, uniform aminosilane monolayers: A platform for protein or ligand immobilization. Colloids Surf A. 2012;414:384–92.

38. Howarter JA, Youngblood JP. Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir. 2006;22(26):11142–7. doi: 10.1021/la061240g 17154595

39. Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;30(1):3.22.1–3.22.9.

40. Ji H, Greening DW, Barnes TW, Lim JW, Tauro BJ, Rai A, et al. Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics. 2013;13(10–11):1672–86. doi: 10.1002/pmic.201200562 23585443

41. Kalra H, Adda CG, Liem M, Ang CS, Mechler A, Simpson RJ, et al. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics. 2013;13(22):3354–64. doi: 10.1002/pmic.201300282 24115447

42. Akagi T, Ichiki T. Microcapillary chip-based extracellular vesicle profiling system. In: Kuo WP, Jia S, editors. Extracellular vesicles: Methods and protocols. New York, NY: Springer New York; 2017. p. 209–17.

43. Uchida K, Otsuka H, Kaneko M, Kataoka K, Nagasaki Y. A reactive poly(ethylene glycol) layer to achieve specific surface plasmon resonance sensing with a high s/n ratio: The substantial role of a short underbrushed peg layer in minimizing nonspecific adsorption. Anal Chem. 2005;77(4):1075–80. doi: 10.1021/ac0486140 15858988

44. Lodish H, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A, et al. The lipid bilayer: Composition and structural organization. Molecular cell biology, 8th edition: W.H. Freeman (New York); 2016. p. 274.

45. Et-Thakafy O, Delorme N, Gaillard C, Mériadec C, Artzner F, Lopez C, et al. Mechanical properties of membranes composed of gel-phase or fluid-phase phospholipids probed on liposomes by atomic force spectroscopy. Langmuir. 2017;33(21):5117–26. doi: 10.1021/acs.langmuir.7b00363 28475345

46. Swaminathan V, Mythreye K, Brien ET, Berchuck A, Blobe GC, Superfine R. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 2011;71(15):5075. doi: 10.1158/0008-5472.CAN-11-0247 21642375

47. Campos H, Genest JJ Jr., Blijlevens E, McNamara JR, Jenner JL, Ordovas JM, et al. Low density lipoprotein particle size and coronary artery disease. Arterioscler Thromb Vasc Biol. 1992;12(2):187–95.

48. Grigor’eva AE, Dyrkheeva NS, Bryzgunova OE, Tamkovich SN, Chelobanov BP, Ryabchikova EI. Contamination of exosome preparations, isolated from biological fluids. Biochem (Mosc), Suppl, Ser B Biomed Chem. 2017;11(3):265–71.

49. Batchelor GK. An introduction to fluid dynamics. Cambridge: Cambridge University Press; 2000.

50. Goetzl EJ, Schwartz JB, Abner EL, Jicha GA, Kapogiannis D. High complement levels in astrocyte‐derived exosomes of alzheimer disease. Ann Neurol. 2018;83(3):544–52. doi: 10.1002/ana.25172 29406582

51. Stremersch S, Marro M, Pinchasik BE, Baatsen P, Hendrix A, De Smedt SC, et al. Identification of individual exosome-like vesicles by surface enhanced raman spectroscopy. Small. 2016;12(24):3292–301. doi: 10.1002/smll.201600393 27171437

52. Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, Chen H, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol. 2018;20(3):332–43. doi: 10.1038/s41556-018-0040-4 29459780


Článek vyšel v časopise

PLOS One


2019 Číslo 10