Host plants influence the composition of the gut bacteria in Henosepilachna vigintioctopunctata

Autoři: Jing Lü aff001;  Wei Guo aff001;  Shimin Chen aff001;  Mujuan Guo aff001;  Baoli Qiu aff001;  Chunxiao Yang aff002;  Tengxiang Lian aff002;  Huipeng Pan aff001
Působiště autorů: Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China aff001;  State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article


The gut bacteria of insects positively influence the physiology of their host, however, the dynamics of this complicated ecosystem are not fully clear. To improve our understanding, we characterized the gut prokaryotic of Henosepilachna vigintioctopunctata that fed on two host plants, Solanum melongena (referred to as QZ hereafter) and Solanum nigrum (referred to as LK hereafter), by sequencing the V3-V4 hypervariable region of the 16S rRNA gene using the Illumina MiSeq system. The results revealed that the gut bacterial composition varied between specimens that fed on different host plants. The unweighted pair group method with arithmetic mean analyses and principal coordinate analysis showed that the bacterial communities of the LK and QZ groups were distinct. Four phyla (Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria) were present in all H. vigintioctopunctata gut samples. It is noteworthy that bacteria of the phylum Cyanobacteria were only found in the LK group, with a low relative abundance. Proteobacteria and Enterobacteriaceae were the predominant phylum and family, respectively, in both the LK and QZ groups. Linear discriminant analysis effect size (LEfSe) analyses showed that the QZ group enriched the Bacilli class and Lactococcus genus; while the LK group enriched the Alphaproteobacteria class and Ochrobactrum genus. PICRUSt analysis showed that genes predicted to be involved in xenobiotic biodegradation and metabolism, metabolism of other amino acids, signaling molecules, and interaction were significantly higher in the QZ group. Genes predicted to be involved in the metabolism of cofactors and vitamins were significantly higher in the LK group. Furthermore, the complexity of the network structure and the modularity were higher in the LK group than in the QZ group. This is the first study to characterize the gut bacteria of H. vigintioctopunctat, our results demonstrate that the two host plants tested had a considerable impact on bacterial composition in the gut of H. vigintioctopunctata and that the bacterial communities were dominated by relatively few taxa.

Klíčová slova:

Community ecology – Gut bacteria – Leaves – Plants – Sequence databases – Solanum – Xenobiotic metabolism – Insect physiology


1. Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, et al. (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334(6056): 670–674. doi: 10.1126/science.1212782 22053049

2. Venema K (2010) Role of gut microbiota in the control of energy and carbohydrate metabolism. Curr Opin Clin Nutr Metab Care 13(4): 432–438. doi: 10.1097/MCO.0b013e32833a8b60 20531179

3. Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489(7415): 242. doi: 10.1038/nature11552 22972297

4. Engel P, Moran NA (2013) The gut microbiota of insects–diversity in structure and function. FEMS Microbiol Rev 37(5): 699–735. doi: 10.1111/1574-6976.12025 23692388

5. Weiss BL, Wang J, Aksoy S (2011) Tsetse immune system maturation requires the presence of obligate symbionts in larvae. PLoS Biol 9(5): e1000619. doi: 10.1371/journal.pbio.1000619 21655301

6. Werren JH (2012) Symbionts provide pesticide detoxification. P Natl Acad Sci USA 109(22): 8364–8365.

7. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49(1): 71–92.

8. Frago E, Dicke M, Godfray HCJ (2012) Insect symbionts as hidden players in insect–plant interactions. Trends Ecol Evol 27(12), 705–711. doi: 10.1016/j.tree.2012.08.013 22985943

9. Pérez–Cobas AE, Maiques E, Angelova A, Carrasco P, Moya A, Latorre A (2015) Diet shapes the gut microbiota of the omnivorous cockroach Blattella germanica. FEMS Microbiol Rev 91(4): fiv022.

10. Kwong WK, Moran NA (2015). Evolution of host specialization in gut microbes: the bee gut as a model. Gut Microbes 6(3): 214–220. doi: 10.1080/19490976.2015.1047129 26011669

11. Su L, Yang L, Huang S, Li Y, Su X, Wang F, et al. (2017) Variation in the gut microbiota of termites (Tsaitermes ampliceps) against different diets. Appl Biochemistry Biotech 181(1): 32–47

12. Zhou L, Wang XP, Li CR, Gui LY, Zhang YJ (2014) Life table of the laboratory population of Henosepilachna vigintioctopunctata at different temperatures. J Environ Entomol 36(4): 494–500.

13. Pang XF, Mao JL (1979) Economic Insects of China, 14, Coleoptera–Coccinellidae, II. 170. 16 pls.

14. Wang ZL, Li CR, Yuan JJ, Li SX, Wang XP, Chi H (2017) Demographic comparison of Henosepilachna vigintioctopunctata (F.) (Coleoptera: Coccinellidae) reared on three cultivars of Solanum melongena L. and a wild host plant Solanum nigrum L. J Econ Entomol 110(5): 2084–2091. doi: 10.1093/jee/tox207 28961786

15. Xia X, Zheng D, Zhong H, Qin B, Gurr GM, Vasseur L, et al. (2013). DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS ONE 8: e68852. doi: 10.1371/journal.pone.0068852 23894355

16. Lü J, Chen S, Guo M, Ye C, Qiu B, Wu J, et al. (2019) Corrigendum: Selection and validation of reference genes for RT-qPCR analysis of the ladybird beetle Henosepilachna vigintioctopunctata. Front Physiol 10: 981. doi: 10.3389/fphys.2019.00981 31402876

17. Li Y, Hu X, Yang S, Zhou J, Zhang T, Qi L, et al. (2017) Comparative analysis of the gut microbiota composition between captive and wild forest musk deer. Front Microbiol 8: 1705. doi: 10.3389/fmicb.2017.01705 28928728

18. Xia Y, Lu M, Chen G, Cao J, Gao F, Wang M, et al. (2018) Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. Fish Shellfish Immun 76: 368–379.

19. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12: R16. doi: 10.1186/gb-2011-12-2-r16

20. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of largescale molecular data sets. Nucleic Acids Res 40: 109–114.

21. Jiang Y, Li S, Li R, Zhang J, Liu Y, Lü L, et al. (2017) Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biol Biochem 109: 145–155.

22. Pan HP, Chu D, Liu BM, Xie W, Wang SL, Wu QJ, et al. (2013). Relative amount of symbionts in insect hosts changes with host–plant adaptation and insecticide resistance. Environ Entomol 42(1): 74–78. doi: 10.1603/EN12114 23339787

23. Kohl KD, Varner J, Wilkening JL, Dearing MD (2018) Gut microbial communities of American pikas (Ochotona princeps): Evidence for phylosymbiosis and adaptations to novel diets. J Anim Ecol 87(2): 323–330. doi: 10.1111/1365-2656.12692 28502120

24. Kudo R, Masuya H, Endoh R, Kikuchi T, Ikeda H (2019) Gut bacterial and fungal communities in ground–dwelling beetles are associated with host food habit and habitat. ISME J 13: 676. doi: 10.1038/s41396-018-0298-3 30333525

25. Mikaelyan A, Dietrich C, Köhler T, Poulsen M, Sillam‐Dussès D, Brune A (2015) Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mol Ecol 24(20): 5284–5295. doi: 10.1111/mec.13376 26348261

26. Colman DR, Toolson EC, Takacs-Vesbach CD (2012) Do diet and taxonomy influence insect gut bacterial communities?. Mol Ecol 21(20): 5124–5137. doi: 10.1111/j.1365-294X.2012.05752.x 22978555

27. Sugio A, Dubreuil G, Giron D, Simon JC (2014) Plant–insect interactions under bacterial influence: ecological implications and underlying mechanisms. J Exp Bot 66(2): 467–478. doi: 10.1093/jxb/eru435 25385767

28. Ferrari J, Vavre F (2011) Bacterial symbionts in insects or the story of communities affecting communities. Philosophical Transactions B, 366: 1389–1400.

29. Tagliavia M, Messina E, Manachini B, Cappello S, Quatrini P (2014) The gut microbiota of larvae of Rhynchophorus ferrugineus Oliver (Coleoptera: Curculionidae). BMC Microbiol 14: 136. doi: 10.1186/1471-2180-14-136 24884866

30. Wang H, Jin L, Zhang H (2011) Comparison of the diversity of the bacterial communities in the intestinal tract of adult Bactrocera dorsalis from three different populations. J Appl Microbiol 110(6): 1390–1401. doi: 10.1111/j.1365-2672.2011.05001.x 21395953

31. Luo M, Zhang H, Du Y, Idrees A, He L, Chen J, et al. (2018) Molecular identification of cultivable bacteria in the gut of adult Bactrocera tau (Walker) and their trapping effect. Pest Manag Sci 74(12): 2842–2850. doi: 10.1002/ps.5074 29749026

32. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. P Natl Acad Sci USA 102(31): 11070–11075.

33. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122): 1022. doi: 10.1038/4441022a 17183309

34. Chen B, Teh BS, Sun C, Hu S, Lu X, Boland W, et al (2016) Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Sci Rep 6: 29505. doi: 10.1038/srep29505 27389097

35. Fonknechten N, Chaussonnerie S, Tricot S, Lajus A, Andreesen JR, Perchat N, et al (2010) Clostridium sticklandii, a specialist in amino acid degradation: revisiting its metabolism through its genome sequence. BMC Genomics 11(1): 555.

36. Soo RM, Hemp J, Parks DH, Fischer WW, Hugenholtz P (2017) On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science 355: 1436–1440. doi: 10.1126/science.aal3794 28360330

37. Utami YD, Kuwahara H, Murakami T, Morikawa T, Sugaya K, Kihara K, et al (2018) Phylogenetic diversity and single-cell genome analysis of “Melainabacteria”, a non-photosynthetic cyanobacterial group, in the termite gut. Microbes Environ 33(1): 50–57. doi: 10.1264/jsme2.ME17137 29415909

38. Strano CP, Malacrinò A, Campolo O, Palmeri V (2018) Influence of host plant on Thaumetopoea pityocampa gut bacterial community. Microb Ecol 75(2): 487–494. doi: 10.1007/s00248-017-1019-6 28735425

39. Crotti E, Balloi A, Hamdi C, Sansonno L, Marzorati M, Gonella E, et al. (2012) Microbial symbionts: a resource for the management of insect‐related problems. Microb Biotechnol 5(3): 307–317. doi: 10.1111/j.1751-7915.2011.00312.x 22103294

40. Grimont PA, Grimont F (1978) Biotyping of Serratia marcescens and its use in epidemiological studies. J Clin Microbiol 8(1): 73–83. 353073

41. Lauzon CR, Bussert TG, Sjogren RE, Prokopy RJ (2013) Serratia marcescens as a bacterial pathogen of Rhagoletis pomonella flies (Diptera: Tephritidae). Eur J Entomol 100(1): 87–92.

42. Aggarwal C, Paul S, Tripathi V, Paul B, Khan MA (2015) Chitinolytic activity in Serratia marcescens (strain SEN) and potency against different larval instars of Spodoptera litura with effect of sublethal doses on insect development. BioControl 60(5): 631–640.

43. Odukoya JO, Oshodi AA (2018) Evaluation of the nutritional qualities of the Parquetina nigrescens, Launaea taraxacifolia and Solanum nigrum. Eur J Pure Appl Chem 5(1).

44. Yao Z, Wang A, Li Y, Cai Z, Lemaitre B, Zhang H (2016) The dual oxidase gene BdDuox regulates the intestinal bacterial community homeostasis of Bactrocera dorsalis. ISME J 10(5): 1037. doi: 10.1038/ismej.2015.202 26565723

45. Carpenter S, Arrow K, Barrett S, Biggs R, Brock W, Crépin AS, et al (2012) General resilience to cope with extreme events. Sustainability 4: 3248–3259.

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden