Role of the Photorhabdus Dam methyltransferase during interactions with its invertebrate hosts

Autoři: Amaury Payelleville aff001;  Dana Blackburn aff002;  Anne Lanois aff001;  Sylvie Pagès aff001;  Marine C. Cambon aff001;  Nadege Ginibre aff001;  David J. Clarke aff002;  Alain Givaudan aff001;  Julien Brillard aff001
Působiště autorů: DGIMI, INRA, Univ. Montpellier, Montpellier, France aff001;  Department of Microbiology, University College Cork, Cork, Ireland aff002;  Évolution et Diversité Biologique, CNRS, UPS Université Paul Sabatier, Toulouse, France aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article


Photorhabdus luminescens is an entomopathogenic bacterium found in symbiosis with the nematode Heterorhabditis. Dam DNA methylation is involved in the pathogenicity of many bacteria, including P. luminescens, whereas studies about the role of bacterial DNA methylation during symbiosis are scarce. The aim of this study was to determine the role of Dam DNA methylation in P. luminescens during the whole bacterial life cycle including during symbiosis with H. bacteriophora. We constructed a strain overexpressing dam by inserting an additional copy of the dam gene under the control of a constitutive promoter in the chromosome of P. luminescens and then achieved association between this recombinant strain and nematodes. The dam overexpressing strain was able to feed the nematode in vitro and in vivo similarly as a control strain, and to re-associate with Infective Juvenile (IJ) stages in the insect. No difference in the amount of emerging IJs from the cadaver was observed between the two strains. Compared to the nematode in symbiosis with the control strain, a significant increase in LT50 was observed during insect infestation with the nematode associated with the dam overexpressing strain. These results suggest that during the life cycle of P. luminescens, Dam is not involved the bacterial symbiosis with the nematode H. bacteriophora, but it contributes to the pathogenicity of the nemato-bacterial complex.

Klíčová slova:

Bacterial pathogens – DNA methylation – Insects – Larvae – Nematode infections – Pathogenesis – Plasmid construction – Symbiosis


1. Hentschel U, Steinert M, Hacker J. Common molecular mechanisms of symbiosis and pathogenesis. Trends in Microbiology. 2000;8(5):226–31. doi: 10.1016/s0966-842x(00)01758-3 10785639

2. Boemare NE, Akhurst RJ, Mourant RG. DNA Relatedness between Xenorhabdus spp. (Enterobacteriaceae), Symbiotic Bacteria of Entomopathogenic Nematodes, and a Proposal To Transfer Xenorhabdus luminescens to a New Genus, Photorhabdus gen. nov. International Journal of Systematic Bacteriology. 1993;43(2):249–55. doi: 10.1099/00207713-43-2-249

3. Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS. Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology. 2015;132:1–41. doi: 10.1016/j.jip.2015.07.009 26225455

4. Han R, Ehlers RU. Pathogenicity, development, and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions. Journal of Invertebrate Pathology. 2000;75(1):55–8. doi: 10.1006/jipa.1999.4900 10631058

5. Hu PJ. Dauer. WormBook: The Online Review of C Elegans Biology2007. p. 1–19.

6. Bedding RA, Molyneux AS. Penetration of Insect Cuticle By Infective Juveniles of Heterorhabditis spp. (Heterorhabditidae: Nematoda). Nematologica. 1982;28(3):354–9. doi: 10.1163/187529282X00402

7. Ciche TA, Ensign JC. For the insect pathogen Photorhabdus luminescens, which end of a nematode is out? Applied and Environmental Microbiology. 2003;69(4):1890–7. doi: 10.1128/AEM.69.4.1890-1897.2003 12676661

8. Clarke DJ, Dowds BCA. Virulence Mechanisms of Photorhabdus sp. Strain K122 toward Wax Moth Larvae. Journal of Invertebrate Pathology. 1995;66(2):149–55. doi: 10.1006/jipa.1995.1078

9. Watson RJ, Joyce SA, Spencer GV, Clarke DJ. The exbD gene of Photorhabdus temperata is required for full virulence in insects and symbiosis with the nematode Heterorhabditis. Molecular Microbiology. 2005;56(3):763–73. Epub 2005/04/12. MMI4574 [pii] doi: 10.1111/j.1365-2958.2005.04574.x 15819630.

10. Bintrim SB, Ensign JC. Insertional inactivation of genes encoding the crystalline inclusion proteins of Photorhabdus luminescens results in mutants with pleiotropic phenotypes. Journal of Bacteriology. 1998;180(5):1261–9. 9495767

11. Bowen DJ, Ensign JC. Isolation and characterization of intracellular protein inclusions produced by the entomopathogenic bacterium Photorhabdus luminescens. Applied and Environmental Microbiology. 2001;67(10):4834–41. doi: 10.1128/AEM.67.10.4834-4841.2001 11571191

12. Somvanshi VS, Sloup RE, Crawford JM, Martin AR, Heidt AJ, Kim KS, et al. A single promoter inversion switches Photorhabdus between pathogenic and mutualistic states. Science. 2012;337(6090):88–93. Epub 2012/07/07. doi: 10.1126/science.1216641 22767929; PubMed Central PMCID: PMC4006969.

13. Somvanshi VS, Kaufmann-Daszczuk B, Kim KS, Mallon S, Ciche TA. Photorhabdus phase variants express a novel fimbrial locus, mad, essential for symbiosis. Mol Microbiol. 2010;77(4):1021–38. Epub 2010/06/25. doi: 10.1111/j.1365-2958.2010.07270.x 20572934.

14. Ciche TA, Kim KS, Kaufmann-Daszczuk B, Nguyen KC, Hall DH. Cell Invasion and Matricide during Photorhabdus luminescens Transmission by Heterorhabditis bacteriophora Nematodes. Appl Environ Microbiol. 2008;74(8):2275–87. Epub 2008/02/19. doi: 10.1128/AEM.02646-07 18281425; PubMed Central PMCID: PMC2293164.

15. Clarke DJ. The Regulation of Secondary Metabolism in Photorhabdus. Curr Top Microbiol Immunol. 2017;402:81–102. Epub 2016/07/30. doi: 10.1007/82_2016_21 27469305.

16. Nielsen-LeRoux C, Gaudriault S, Ramarao N, Lereclus D, Givaudan A. How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Curr Opin Microbiol. 2012;15(3):220–31. Epub 2012/05/29. doi: 10.1016/j.mib.2012.04.006 22633889.

17. Clarke DJ. Photorhabdus: a model for the analysis of pathogenicity and mutualism. Cell Microbiol. 2008;10(11):2159–67. Epub 2008/07/24. doi: 10.1111/j.1462-5822.2008.01209.x 18647173.

18. Casadesus J, Low D. Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev. 2006;70(3):830–56. Epub 2006/09/09. doi: 10.1128/MMBR.00016-06 16959970; PubMed Central PMCID: PMC1594586.

19. Garcia-Del Portillo F, Pucciarelli MG, Casadesus J. DNA adenine methylase mutants of Salmonella typhimurium show defects in protein secretion, cell invasion, and M cell cytotoxicity. Proc Natl Acad Sci U S A. 1999;96(20):11578–83. Epub 1999/09/29. doi: 10.1073/pnas.96.20.11578 10500219; PubMed Central PMCID: PMC18076.

20. Heithoff DM, Sinsheimer RL, Low DA, Mahan MJ. An essential role for DNA adenine methylation in bacterial virulence. Science. 1999;284(5416):967–70. Epub 1999/05/13. doi: 10.1126/science.284.5416.967 10320378.

21. Julio SM, Heithoff DM, Sinsheimer RL, Low DA, Mahan MJ. DNA adenine methylase overproduction in Yersinia pseudotuberculosis alters YopE expression and secretion and host immune responses to infection. Infect Immun. 2002;70(2):1006–9. Epub 2002/01/18. doi: 10.1128/IAI.70.2.1006-1009.2002 11796641; PubMed Central PMCID: PMC127708.

22. Robinson VL, Oyston PC, Titball RW. A dam mutant of Yersinia pestis is attenuated and induces protection against plague. FEMS Microbiology Letters. 2005;252(2):251–6. Epub 2005/09/29. doi: 10.1016/j.femsle.2005.09.001 16188402.

23. Kumar N, Mukhopadhyay AK, Patra R, De R, Baddam R, Shaik S, et al. Next-generation sequencing and de novo assembly, genome organization, and comparative genomic analyses of the genomes of two Helicobacter pylori isolates from duodenal ulcer patients in India. J Bacteriol. 2012;194(21):5963–4. Epub 2012/10/10. doi: 10.1128/JB.01371-12 23045484; PubMed Central PMCID: PMC3486096.

24. Kumar S, Karmakar BC, Nagarajan D, Mukhopadhyay AK, Morgan RD, Rao DN. N4-cytosine DNA methylation regulates transcription and pathogenesis in Helicobacter pylori. Nucleic Acids Res. 2018;46(7):3429–45. Epub 2018/02/27. doi: 10.1093/nar/gky126 29481677; PubMed Central PMCID: PMC5909468.

25. Davis-Richardson AG, Russell JT, Dias R, McKinlay AJ, Canepa R, Fagen JR, et al. Integrating DNA Methylation and Gene Expression Data in the Development of the Soybean-Bradyrhizobium N2-Fixing Symbiosis. Front Microbiol. 2016;7:518. Epub 2016/05/06. doi: 10.3389/fmicb.2016.00518 PubMed Central PMCID: PMC4840208. 27148207

26. Ichida H, Matsuyama T, Abe T, Koba T. DNA adenine methylation changes dramatically during establishment of symbiosis. The FEBS journal. 2007;274(4):951–62. doi: 10.1111/j.1742-4658.2007.05643.x 17250744

27. Ichida H, Yoneyama K, Koba T, Abe T. Epigenetic modification of rhizobial genome is essential for efficient nodulation. Biochemical and Biophysical Research Communications. 2009;389(2):301–4. doi: 10.1016/j.bbrc.2009.08.137 19720053

28. Payelleville A, Lanois A, Gislard M, Dubois E, Roche D, Cruveiller S, et al. DNA Adenine Methyltransferase (Dam) Overexpression Impairs Photorhabdus luminescens Motility and Virulence. Front Microbiol. 2017;8:1671. Epub 2017/09/19. doi: 10.3389/fmicb.2017.01671 28919886; PubMed Central PMCID: PMC5585154.

29. Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, et al. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol. 2003;21(11):1307–13. Epub 2003/10/07. doi: 10.1038/nbt886 14528314.

30. Zamora-Lagos MA, Eckstein S, Langer A, Gazanis A, Pfeiffer F, Habermann B, et al. Phenotypic and genomic comparison of Photorhabdus luminescens subsp. laumondii TT01 and a widely used rifampicin-resistant Photorhabdus luminescens laboratory strain. BMC genomics. 2018;19(1):854. Epub 2018/12/01. doi: 10.1186/s12864-018-5121-z 30497380; PubMed Central PMCID: PMC6267812.

31. Lobner-Olesen A, von Freiesleben U. Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells. EMBO J. 1996;15(21):5999–6008. Epub 1996/11/01. PubMed Central PMCID: PMC452401. 8918477

32. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, 2nd, et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene. 1995;166(1):175–6. Epub 1995/12/01. doi: 10.1016/0378-1119(95)00584-1 8529885.

33. Kovach ME, Phillips RW, Elzer PH, Roop RM, 2nd, Peterson KM. pBBR1MCS: a broad-host-range cloning vector. BioTechniques. 1994;16(5):800–2. Epub 1994/05/01. 8068328.

34. Kohler S, Ouahrani-Bettache S, Layssac M, Teyssier J, Liautard JP. Constitutive and inducible expression of green fluorescent protein in Brucella suis. Infect Immun. 1999;67(12):6695–7. Epub 1999/11/24. 10569794; PubMed Central PMCID: PMC97086.

35. Quandt J, Hynes MF. Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene. 1993;127(1):15–21. Epub 1993/05/15. doi: 10.1016/0378-1119(93)90611-6 8486283.

36. Glaeser A, Heermann R. A novel tool for stable genomic reporter gene integration to analyze heterogeneity in Photorhabdus luminescens at the single-cell level. BioTechniques. 2015;59(2):74–81. doi: 10.2144/000114317 26260085

37. Brillard J, Duchaud E, Boemare N, Kunst F, Givaudan A. The PhlA hemolysin from the entomopathogenic bacterium Photorhabdus luminescens belongs to the two-partner secretion family of hemolysins. Journal of Bacteriology. 2002;184(14):3871–8. Epub 2002/06/26. doi: 10.1128/JB.184.14.3871-3878.2002 12081958; PubMed Central PMCID: PMC135187.

38. Mouammine A, Pages S, Lanois A, Gaudriault S, Jubelin G, Bonabaud M, et al. An antimicrobial peptide-resistant minor subpopulation of Photorhabdus luminescens is responsible for virulence. Sci Rep. 2017;7:43670. Epub 2017/03/03. doi: 10.1038/srep43670 28252016; PubMed Central PMCID: PMC5333078.

39. Jubelin G, Lanois A, Severac D, Rialle S, Longin C, Gaudriault S, et al. FliZ is a global regulatory protein affecting the expression of flagellar and virulence genes in individual Xenorhabdus nematophila bacterial cells. PLoS Genet. 2013;9(10):e1003915. Epub 2013/11/10. doi: 10.1371/journal.pgen.1003915 PGENETICS-D-13-01405 [pii]. 24204316; PubMed Central PMCID: PMC3814329.

40. Poitout S, Bues R. Elevage de plusieurs especes de Lepidopteres Noctuidae sur milieu artificiel riche et sur milieu artificiel simplifie. Ann Zool Ecol Anim. 1970;2:79–91.

41. Givaudan A, Lanois A. FlhDC, the flagellar master operon of Xenorhabdus nematophilus: requirement for motility, lipolysis, extracellular hemolysis, and full virulence in insects. J Bacteriol. 2000;182(1):107–15. Epub 1999/12/30. doi: 10.1128/jb.182.1.107-115.2000 10613869; PubMed Central PMCID: PMC94246.

42. Clarke DJ. The genetic basis of the symbiosis between Photorhabdus and its invertebrate hosts. Advances in applied microbiology. 2014;88:1–29. Epub 2014/04/29. doi: 10.1016/B978-0-12-800260-5.00001-2 24767424.

43. Easom CA, Clarke DJ. Motility is required for the competitive fitness of entomopathogenic Photorhabdus luminescens during insect infection. BMC microbiology. 2008;8:168. doi: 10.1186/1471-2180-8-168 18834522

44. Rousset F, Ferdy J-B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography. 2014;37(8):781–90. doi: 10.1111/ecog.00566

45. Payelleville A, Legrand L, Ogier JC, Roques C, Roulet A, Bouchez O, et al. The complete methylome of an entomopathogenic bacterium reveals the existence of loci with unmethylated Adenines. Sci Rep. 2018;8(1):12091. Epub 2018/08/16. doi: 10.1038/s41598-018-30620-5 30108278; PubMed Central PMCID: PMC6092372.

46. Erova TE, Fadl AA, Sha J, Khajanchi BK, Pillai LL, Kozlova EV, et al. Mutations within the catalytic motif of DNA adenine methyltransferase (Dam) of Aeromonas hydrophila cause the virulence of the Dam-overproducing strain to revert to that of the wild-type phenotype. Infection and Immunity. 2006;74(10):5763–72. Epub 2006/09/22. doi: 10.1128/IAI.00994-06 16988254; PubMed Central PMCID: PMC1594908.

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden