Identification of closely related Ixodes species by protein profiling with MALDI-TOF mass spectrometry


Autoři: Pierre H. Boyer aff001;  Lionel Almeras aff002;  Olivier Plantard aff005;  Antoine Grillon aff001;  Émilie Talagrand-Reboul aff001;  Karen McCoy aff006;  Benoît Jaulhac aff001;  Nathalie Boulanger aff001
Působiště autorů: EA 7290: Early Bacterial Virulence: Group, CHRU Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France aff001;  Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France aff002;  Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France aff003;  IHU Méditerranée Infection, Marseille, France aff004;  BIOEPAR, INRA, Oniris, Université Bretagne Loire, Nantes, France aff005;  Maladies Infectieuses & Vecteurs: Ecologie, Génétique, Evolution & Contrôle (MIVEGEC), Université de Montpellier–CNRS—IRD, Centre IRD, Montpellier, France aff006;  French National Reference Center for , Hôpitaux Universitaires de Strasbourg, Strasbourg, France aff007
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223735

Souhrn

Ticks are vectors of infectious diseases of major importance in human and veterinary medicine. For epidemiological studies, accurate identification of ticks is crucial to define their potential role as vectors and to develop control and prevention strategies. Although morphological and molecular methods are widely used to identify ticks, an innovative approach using MALDI-TOF MS technology recently emerged as an alternative tool. Previous works showed that MALDI-TOF MS was highly effective in identifying ticks, but these works mainly tested tick specimens of different genera. To confirm the accuracy of this new tool for tick identification, nine closely related tick species belonging to the Ixodes genus were analysed, specimens of the Dermacentor reticulatus species were also included in the analysis as an outer group. Three of the species used for the present study belonged to the I. ricinus species complex, which are known to transmit Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis. A total of 246 tick specimens were submitted to MALDI-TOF MS analysis, and two body parts (half-idiosoma and four legs) were individually investigated. For each body part, intraspecies reproducibility and interspecies specificity of the MS profiles were determined. The profile analysis revealed that the main determinant for spectra clustering was the tick species for both legs and half-idiosoma. For each body part, a reference database of spectra was set up including 2 to 5 specimens per species randomly selected, and genotyped using 16s rDNA and COI genes to confirm their morphological identification. Both created spectral databases were individually blind tested with their respective body part using the remaining specimens, which were correctly identified in 98.5% of the cases. MALDI-TOF MS is a reliable tool for tick identification, including specimens belonging to closely related species and hardly distinguishable using morphology. The 4-legs as well as the half-idiosoma of ticks can now be applied for specimen identification using two different databases. The combined use of these two body parts improves the rate of tick identification and their confidence level.

Klíčová slova:

Ixodes – Matrix-assisted laser desorption ionization time-of-flight mass spectrometry – Sequence databases – Species delimitation – Ticks – Ricinus – Lyme disease – Borrelia burgdorferi


Zdroje

1. Dantas-Torres F, Chomel BB, Otranto D. Ticks and tick-borne diseases: a One Health perspective. Trends Parasitol. 2012;28: 437–446. doi: 10.1016/j.pt.2012.07.003 22902521

2. Stanek G, Wormser GP, Gray J, Strle F. Lyme borreliosis. Lancet Lond Engl. 2012;379: 461–473.

3. Guglielmone AA, Robbins RG, Apanaskevich DA, Petney TN, Estrada-Peña A, Horak IG, et al. The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: a list of valid species names. Zootaxa. 2010;2528: 1–28.

4. Yang LH, Han BA. Data-driven predictions and novel hypotheses about zoonotic tick vectors from the genus Ixodes. BMC Ecol. 2018;18: 7. doi: 10.1186/s12898-018-0163-2 29448923

5. Eisen L, Lane RS. Vectors of Borrelia burgdorferi sensu lato. Lyme borreliosis: biology, epidemiology, and control. CABI. Oxon, UK.; New York: CABI Pub; 2002. pp. 91–116.

6. Heylen D, Sprong H, van Oers K, Fonville M, Leirs H, Matthysen E. Are the specialized bird ticks, Ixodes arboricola and I. frontalis, competent vectors for Borrelia burgdorferi sensu lato? Environ Microbiol. 2014;16: 1081–1089. doi: 10.1111/1462-2920.12332 24237635

7. Lv J, Wu S, Zhang Y, Zhang T, Feng C, Jia G, et al. Development of a DNA barcoding system for the Ixodida (Acari: Ixodida). Mitochondrial DNA J DNA Mapp Seq Anal. 2014;25: 142–149. doi: 10.3109/19401736.2013.792052 23631370

8. Vial L, Stachurski F, Leblond A, Huber K, Vourc’h G, René-Martellet M, et al. Strong evidence for the presence of the tick Hyalomma marginatum Koch, 1844 in southern continental France. Ticks Tick-Borne Dis. 2016; doi: 10.1016/j.ttbdis.2016.08.002 27568169

9. Yssouf A, Almeras L, Raoult D, Parola P. Emerging tools for identification of arthropod vectors. Future Microbiol. 2016;11: 549–566. doi: 10.2217/fmb.16.5 27070074

10. Parola P, Raoult D. Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis. 2001;32: 897–928. doi: 10.1086/319347 11247714

11. Estrada-Peña A, D’Amico G, Palomar AM, Dupraz M, Fonville M, Heylen D, et al. A comparative test of ixodid tick identification by a network of European researchers. Ticks Tick-Borne Dis. 2017;8: 540–546. doi: 10.1016/j.ttbdis.2017.03.001 28320640

12. Rumer L, Sheshukova O, Dautel H, Mantke OD, Niedrig M. Differentiation of Medically Important Euro-Asian Tick Species Ixodes ricinus, Ixodes persulcatus, Ixodes hexagonus, and Dermacentor reticulatus by Polymerase Chain Reaction. Vector-Borne Zoonotic Dis. 2010;11: 899–905. doi: 10.1089/vbz.2009.0191 21028959

13. Lv J, Wu S, Zhang Y, Chen Y, Feng C, Yuan X, et al. Assessment of four DNA fragments (COI, 16S rDNA, ITS2, 12S rDNA) for species identification of the Ixodida (Acari: Ixodida). Parasit Vectors. 2014;7: 93. doi: 10.1186/1756-3305-7-93 24589289

14. Sonenshine DE, Roe RM. Biology of ticks. Volume 1. 2014.

15. Mewara A, Sharma M, Kaura T, Zaman K, Yadav R, Sehgal R. Rapid identification of medically important mosquitoes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Parasit Vectors. 2018;11: 281. doi: 10.1186/s13071-018-2854-0 29720246

16. Sambou M, Aubadie-Ladrix M, Fenollar F, Fall B, Bassene H, Almeras L, et al. Comparison of matrix-assisted laser desorption ionization-time of flight mass spectrometry and molecular biology techniques for identification of Culicoides (Diptera: Ceratopogonidae) biting midges in senegal. J Clin Microbiol. 2015;53: 410–418. doi: 10.1128/JCM.01855-14 25411169

17. Karger A, Kampen H, Bettin B, Dautel H, Ziller M, Hoffmann B, et al. Species determination and characterization of developmental stages of ticks by whole-animal matrix-assisted laser desorption/ionization mass spectrometry. Ticks Tick-Borne Dis. 2012;3: 78–89. doi: 10.1016/j.ttbdis.2011.11.002 22487425

18. Diarra AZ, Almeras L, Laroche M, Berenger J-M, Koné AK, Bocoum Z, et al. Molecular and MALDI-TOF identification of ticks and tick-associated bacteria in Mali. PLoS Negl Trop Dis. 2017;11: e0005762. doi: 10.1371/journal.pntd.0005762 28742123

19. Nebbak A, Willcox AC, Bitam I, Raoult D, Parola P, Almeras L. Standardization of sample homogenization for mosquito identification using an innovative proteomic tool based on protein profiling. Proteomics. 2016; doi: 10.1002/pmic.201600287 27862981

20. Nebbak A, El Hamzaoui B, Berenger J-M, Bitam I, Raoult D, Almeras L, et al. Comparative analysis of storage conditions and homogenization methods for tick and flea species for identification by MALDI-TOF MS. Med Vet Entomol. 2017; doi: 10.1111/mve.12250 28722283

21. Boyer PH, Boulanger N, Nebbak A, Collin E, Jaulhac B, Almeras L. Assessment of MALDI-TOF MS biotyping for Borrelia burgdorferi sl detection in Ixodes ricinus. PloS One. 2017;12: e0185430. doi: 10.1371/journal.pone.0185430 28950023

22. Karger A, Bettin B, Gethmann JM, Klaus C. Whole animal matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry of ticks—Are spectra of Ixodes ricinus nymphs influenced by environmental, spatial, and temporal factors? PloS One. 2019;14: e0210590. doi: 10.1371/journal.pone.0210590 30645604

23. Xu G, Fang QQ, Keirans JE, Durden LA. Molecular phylogenetic analyses indicate that the Ixodes ricinus complex is a paraphyletic group. J Parasitol. 2003;89: 452–457. doi: 10.1645/0022-3395(2003)089[0452:MPAITT]2.0.CO;2 12880241

24. Pérez-Eid C. La famille des Ixodidae. Les tiques: identification, biologie, importance médicale et vétérinaire. Lavoisier. 2007. pp. 93–181.

25. Keirans JE, Hutcheson HJ, Durden LA, Klompen JS. Ixodes scapularis (Acari:Ixodidae): redescription of all active stages, distribution, hosts, geographical variation, and medical and veterinary importance. J Med Entomol. 1996;33: 297–318. doi: 10.1093/jmedent/33.3.297 8667375

26. Filippova NA. Ixodid ticks (Ixodinae). Fauna USSR New Ser. Leningrad: Nauka; 1977.

27. Yssouf A, Flaudrops C, Drali R, Kernif T, Socolovschi C, Berenger J-M, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification of tick vectors. J Clin Microbiol. 2013;51: 522–528. doi: 10.1128/JCM.02665-12 23224087

28. Guy EC, Stanek G. Detection of Borrelia burgdorferi in patients with Lyme disease by the polymerase chain reaction. J Clin Pathol. 1991;44: 610–611. doi: 10.1136/jcp.44.7.610 1856296

29. Rijpkema S, Golubić D, Molkenboer M, Verbeek-De Kruif N, Schellekens J. Identification of four genomic groups of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in a Lyme borreliosis endemic region of northern Croatia. Exp Appl Acarol. 1996;20: 23–30. 8746131

30. Mangold AJ, Bargues MD, Mas-Coma S. Mitochondrial 16S rDNA sequences and phylogenetic relationships of species of Rhipicephalus and other tick genera among Metastriata (Acari: Ixodidae). Parasitol Res. 1998;84: 478–484. doi: 10.1007/s004360050433 9660138

31. Meddeb M, Koebel C, Jaulhac B, Schramm F. Comparison between a Broad-Range Real-Time and a Broad-Range End-Point PCR Assays for the Detection of Bacterial 16S rRNA in Clinical Samples. Ann Clin Lab Sci. 2016;46: 18–25. 26927338

32. Stucky BJ. SeqTrace: A Graphical Tool for Rapidly Processing DNA Sequencing Chromatograms. J Biomol Tech JBT. 2012;23: 90–93. doi: 10.7171/jbt.12-2303-004 22942788

33. Kumsa B, Laroche M, Almeras L, Mediannikov O, Raoult D, Parola P. Morphological, molecular and MALDI-TOF mass spectrometry identification of ixodid tick species collected in Oromia, Ethiopia. Parasitol Res. 2016;115: 4199–4210. doi: 10.1007/s00436-016-5197-9 27469536

34. Kaufmann C, Ziegler D, Schaffner F, Carpenter S, Pflüger V, Mathis A. Evaluation of matrix-assisted laser desorption/ionization time of flight mass spectrometry for characterization of Culicoides nubeculosus biting midges. Med Vet Entomol. 2011;25: 32–38. doi: 10.1111/j.1365-2915.2010.00927.x 21118284

35. Singhal N, Kumar M, Virdi JS. MALDI-TOF MS in clinical parasitology: applications, constraints and prospects. Parasitology. 2016;143: 1491–1500. doi: 10.1017/S0031182016001189 27387025

36. Tahir D, Almeras L, Varloud M, Raoult D, Davoust B, Parola P. Assessment of MALDI-TOF mass spectrometry for filariae detection in Aedes aegypti mosquitoes. PLoS Negl Trop Dis. 2017;11: e0006093. doi: 10.1371/journal.pntd.0006093 29261659

37. Fotso Fotso A, Mediannikov O, Diatta G, Almeras L, Flaudrops C, Parola P, et al. MALDI-TOF mass spectrometry detection of pathogens in vectors: the Borrelia crocidurae/Ornithodoros sonrai paradigm. PLoS Negl Trop Dis. 2014;8: e2984. doi: 10.1371/journal.pntd.0002984 25058611

38. Yssouf A, Almeras L, Berenger J-M, Laroche M, Raoult D, Parola P. Identification of tick species and disseminate pathogen using hemolymph by MALDI-TOF MS. Ticks Tick-Borne Dis. 2015;6: 579–586. doi: 10.1016/j.ttbdis.2015.04.013 26051210

39. Yssouf A, Almeras L, Terras J, Socolovschi C, Raoult D, Parola P. Detection of Rickettsia spp in ticks by MALDI-TOF MS. PLoS Negl Trop Dis. 2015;9: e0003473. doi: 10.1371/journal.pntd.0003473 25659152

40. Rothen J, Githaka N, Kanduma EG, Olds C, Pflüger V, Mwaura S, et al. Matrix-assisted laser desorption/ionization time of flight mass spectrometry for comprehensive indexing of East African ixodid tick species. Parasit Vectors. 2016;9. doi: 10.1186/s13071-015-1240-4

41. Önder Ö, Shao W, Kemps BD, Lam H, Brisson D. Identifying sources of tick blood meals using unidentified tandem mass spectral libraries. Nat Commun. 2013;4: 1746. doi: 10.1038/ncomms2730 23612287

42. Boucheikhchoukh M, Laroche M, Aouadi A, Dib L, Benakhla A, Raoult D, et al. MALDI-TOF MS identification of ticks of domestic and wild animals in Algeria and molecular detection of associated microorganisms. Comp Immunol Microbiol Infect Dis. 2018;57: 39–49. doi: 10.1016/j.cimid.2018.05.002 30017077

43. Nebbak A, Koumare S, Willcox AC, Berenger J-M, Raoult D, Almeras L, et al. Field application of MALDI-TOF MS on mosquito larvae identification. Parasitology. 2018;145: 677–687. doi: 10.1017/S0031182017001354 28768561

44. Dantas-Torres F, Lia RP, Capelli G, Otranto D. Efficiency of flagging and dragging for tick collection. Exp Appl Acarol. 2013;61: 119–127. doi: 10.1007/s10493-013-9671-0 23417703

45. Goldstein V, Boulanger N, Schwartz D, George J-C, Ertlen D, Zilliox L, et al. Factors responsible for Ixodes ricinus nymph abundance: Are soil features indicators of tick abundance in a French region where Lyme borreliosis is endemic? Ticks Tick-Borne Dis. 2018; doi: 10.1016/j.ttbdis.2018.03.013 29606622

46. van Prehn J, van Veen SQ, Schelfaut JJG, Wessels E. MALDI-TOF mass spectrometry for differentiation between Streptococcus pneumoniae and Streptococcus pseudopneumoniae. Diagn Microbiol Infect Dis. 2016;85: 9–11. doi: 10.1016/j.diagmicrobio.2016.01.012 26971637

47. Khot PD, Fisher MA. Novel approach for differentiating Shigella species and Escherichia coli by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2013;51: 3711–3716. doi: 10.1128/JCM.01526-13 23985919

48. Wright CL, Hynes WL, White BT, Marshall MN, Gaff HD, Gauthier DT. Single-tube real-time PCR assay for differentiation of Ixodes affinis and Ixodes scapularis. Ticks Tick-Borne Dis. 2014;5: 48–52. doi: 10.1016/j.ttbdis.2013.08.003 24192510

49. Värv K, Ivanova A, Geller J, Remm J, Jaik K, Tikunova N, et al. Identification of I. ricinus, I. persulcatus and I. trianguliceps species by multiplex PCR. Ticks Tick-Borne Dis. 2016; doi: 10.1016/j.ttbdis.2016.11.004 27856176

50. Dumler JS. The biological basis of severe outcomes in Anaplasma phagocytophilum infection. Fems Immunol Med Microbiol. 2012;64: 13–20. doi: 10.1111/j.1574-695X.2011.00909.x 22098465

51. Telford SR III, Goethert HK, Molloy PJ, Berardi VP, Chowdri HR, Gugliotta JL, et al. Borrelia miyamotoi disease: neither Lyme disease nor relapsing fever. Clin Lab Med. 2015;35: 867–882. doi: 10.1016/j.cll.2015.08.002 26593262

52. Lindquist L, Vapalahti O. Tick-borne encephalitis. The Lancet. 2008;371: 1861–1871. doi: 10.1016/S0140-6736(08)60800-4

53. Parola P, Rovery C, Rolain JM, Brouqui P, Davoust B, Raoult D. Rickettsia slovaca and R. raoultii in tick-borne Rickettsioses. Emerg Infect Dis. 2009;15: 1105–1108. doi: 10.3201/eid1507.081449 19624931

54. Guglielmone AA, Robbins RG, Apanaskevich DA, Petney TN, Estrada-Peña A, Horak IG. The Hard Ticks of the World: (Acari: Ixodida: Ixodidae) [Internet]. Springer Netherlands; 2014. Available: //http://www.springer.com/gp/book/9789400774964

55. Montagna M, Sassera D, Griggio F, Epis S, Bandi C, Gissi C. Tick-box for 3’-end formation of mitochondrial transcripts in Ixodida, basal chelicerates and Drosophila. PloS One. 2012;7: e47538. doi: 10.1371/journal.pone.0047538 23077630

56. Carpi G, Kitchen A, Kim HL, Ratan A, Drautz-Moses DI, McGraw JJ, et al. Mitogenomes reveal diversity of the European Lyme borreliosis vector Ixodes ricinus in Italy. Mol Phylogenet Evol. 2016;101: 194–202. doi: 10.1016/j.ympev.2016.05.009 27165938


Článek vyšel v časopise

PLOS One


2019 Číslo 10