Dimethyl disulfide (DMDS) as an effective soil fumigant against nematodes in China

Autoři: Dongdong Yan aff001;  Aocheng Cao aff001;  Qiuxia Wang aff001;  Yuan Li aff001;  Ouyang Canbin aff001;  Meixia Guo aff001;  Xiaoqin Guo aff001
Působiště autorů: Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0224456


Root-knot nematode is an important soil pest in horticulture crops and constrains the protected cultivation development after methyl bromide (MB) was phased out in China. Dimethyl disulfide (DMDS) exhibits excellent efficacy against nematodes. Laboratory experiments and field trials were set up to clarify DMDS dose, efficacy, and yield. A dose-response experiment using three methods showed that DMDS presented high efficacy against the nematode Meloidogyne incongnita. The LC50 values of direct fumigation activity in the dessicator method were 0.086 and 0.070 mg L-1 for DMDS and 1,3-D, 29.865 and 18.851 mg L-1 for DMDS and 1,3-D of direct contact activity in the small tube method, 6.438 and 3.061 mg L-1 for DMDS and 1,3-D of soil fumigation activity in the soil fumigation method, respectively. The field trials indicated that DMDS showed an excellent efficacy of 80%−94% on root-knot nematode applied at 10−100 g m−2 on tomato in Tongzhou, Beijing. The crop yields showed no significant difference after applying 10–80 g m-2 DMDS. Results indicate that DMDS applied at 10 g m-2 for controlling root-knot nematode in Beijing is cost effective. In conclusion, DMDS is an excellent soil fumigant that can be used for controlling root-knot nematode and can be an potential novel alternative to MB in China.

Klíčová slova:

Agricultural soil science – Crops – Fruit crops – Nematode infections – Soil chemistry – Tomatoes – Cucumber – Vegetable crops


1. MOA. China Agriculture Yearbook. Beijing,China: China Agriculture Press; 2016.

2. Cao A, Guo M, Wang Q, Li Y, Yan D. Progress on soil disinfestation in China and abroad. China vegetables. 2010;21:17–22.

3. MBTOC. Report of the Methyl Bromide Technical Options Committee. Nairobi, Kenya: United Nations Environment Programme, 2010.

4. Auger J, Arnault I, Diwo-Allain S, Ravier M, Molia F, Pettiti M. Insecticidal and fungicidal potential of Allium substances as biofumigants. Agroindustria. 2004;3:5–8. doi: 10.1007/bf01012271 24272187

5. Wang F, Wang Q, Yan D, Mao L, Guo M, Yan P, et al. Effects of dimethyl disulfide on microbial communities in protectorate soils under continuous cropping. Chinese Journal of Eco-Agriculture. 2011;19(4):890–6. doi: 10.3724/sp.j.1011.2011.00890

6. Yu J, Land CJ, Vallad GE, Boyd NS. Tomato tolerance and pest control following fumigation with different ratios of dimethyl disulfide and chloropicrin. Pest Manage Sci. 2019;75(5):1416–24. doi: 10.1002/ps.5262 30417562

7. Mao L, Yan D, Wang Q, Li Y, Ouyang C, Liu P, et al. Evaluation of the combination of dimethyl disulfide and dazomet as an efficient methyl bromide alternative for cucumber production in China. J Agric Food Chem. 2014;62(21):4864–9. doi: 10.1021/jf501255w 24820184

8. Chamorro M, Seijo TE, Noling JC, Santos BDL, Peres NA. Efficacy of fumigant treatments and inoculum placement on control of Macrophomina phaseolina in strawberry beds. Crop Prot. 2016;90:163–9. doi: 10.1016/j.cropro.2016.08.020

9. Gómez-Tenorio MA, Zanón MJ, de Cara M, Lupión B, Tello JC. Efficacy of dimethyl disulfide (DMDS) against Meloidogyne sp. and three formae speciales of Fusarium oxysporum under controlled conditions. Crop Prot. 2015;78:263–9. doi: 10.1016/j.cropro.2015.09.013

10. Conkle JL, Cabrera JA, Thomas JE, Wang D, Gan J. Effects of CO2 dissolution on phase distribution and degradation of dimethyl disulfide in soils under grape production. Pest Manage Sci. 2016;72(2):349–53. doi: 10.1002/ps.4004 25765585

11. McAvoy T, Freeman JH. Yellow nutsedge (Cyperus esculentus) control with reduced rates of dimethyl disulfide in combination with totally impermeable film. Weed Technol. 2013;27(3):515–9. doi: 10.1614/wt-d-12-00128.1

12. Stevens M, Freeman J. Efficacy of dimethyl disulfide and metam sodium combinations for the control of nutsedge species. Crop Prot. 2018;110:131–4. doi: 10.1016/j.cropro.2018.04.010

13. Wang X, Fang W, Yan D, Han D, Huang B, Ren Z, et al. Effect of films on dimethyl disulfide emissions, vertical distribution in soil and residues remaining after fumigation. Ecotoxicol Environ Saf. 2018;163:76–83. doi: 10.1016/j.ecoenv.2018.07.063 30048876

14. Bond EJ. Manual of fumigation for insect control. Caracalla VdTd, editor. Rome, Italy: Food and Agriculture Organization of the United Nations; 1984.

15. Komada H. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Rev Plant Prot Res. 1975;8:115–25.

16. Masago H, Yoshikawa M, Fukada M, Nakanishi N. Selective inhibition of Pythium spp. on a medium for direct isolation of Phytophthora spp. from soils and plants. Phytopathology. 1977;67:425–8.

17. Barker KR, Nusbaum CJ, Nelson LA. Effects of storage temperature and extraction procedure on recovery of plant-parasitic nematodes from field soils. J Nematol. 1969;1(3):240–7. 19325684

18. Tang QY, Zhang CX. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci. 2013;20(2):254–60. doi: 10.1111/j.1744-7917.2012.01519.x 23955865

19. Csinos AS, Sumner DR, Johnson WC, Johnson AW, McPherson RM, Dowler CC. Methyl bromide alternatives in tobacco, tomato and pepper transplant production. Crop Prot. 2000;19(1):39–49. doi: 10.1016/s0261-2194(99)00086-1

20. McKinney HH. Influence of soil, temperature and moisture on infection of wheat seedling by Helminthosporium sativum. J Agric Res. 1923;26:195–217.

21. Ruzo LO. Physical, chemical and environmental properties of selected chemical alternatives for the pre-plant use of methyl bromide as soil fumigant. Pest Manag Sci. 2006;62(2):99–113. doi: 10.1002/ps.1135 16308867

22. Cabrera JA, Wang D, Gerik JS, Gan J. Spot drip application of dimethyl disulfide as a post-plant treatment for the control of plant parasitic nematodes and soilborne pathogens in grape production. Pest Manage Sci. 2014;70(7):1151–7. doi: 10.1002/ps.3666 24307137

23. Pecchia S, Franceschini A, Santori A, Vannacci G, Myrta A. Efficacy of dimethyl disulfide (DMDS) for the control of chrysanthemum Verticillium wilt in Italy. Crop Prot. 2017;93:28–32. doi: 10.1016/j.cropro.2016.11.019

24. Gilardi G, Gullino ML, Garibaldi A. Soil disinfestation with dimethyl disulfide for management of Fusarium wilt on lettuce in Italy. Journal of Plant Diseases and Protection. 2017;124(4):361–70. doi: 10.1007/s41348-017-0071-2

25. Santos BM, Lopez-Aranda JM, Miranda L, Medina JJ, Soria C, de los Santos B, et al. Methyl bromide alternatives for high tunnel strawberry production in southern spain. HortTechnology. 2009;19(1):187–92.

26. Cebolla V, Llobell D, Oliver A, Valero LM, Torro F, Hernandez A. The emulsifiable formulations of dimethyldisulfide (DMDS) and its mixtures with chloropicrin as alternatives to methyl bromide. ActaHortic. 2010;883(18):163–70.

27. Mao L, Wang Q, Yan D, Liu P, Shen J, Fang W, et al. Application of the combination of 1,3-dichloropropene and dimethyl disulfide by soil injection or chemigation: effects against soilborne pests in cucumber in China. Journal of Integrative Agriculture. 2016;15(1):145–52. doi: 10.1016/S2095-3119(15)61065-6

28. Ren Z, Li Y, Fang W, Yan D, Huang B, Zhu J, et al. Evaluation of allyl isothiocyanate as a soil fumigant against soil-borne diseases in commercial tomato (Lycopersicon esculentum Mill.) production in China. Pest Manage Sci. 2018;74(9):2146–55. doi: 10.1002/ps.4911 29527806

29. Strauss SL, Kluepfel DA. Anaerobic soil disinfestation: A chemical-independent approach to pre-plant control of plant pathogens. Journal of Integrative Agriculture. 2015;14(11):2309–18. doi: 10.1016/s2095-3119(15)61118-2

30. Fernandez-Bayo JD, Achmon Y, Harrold DR, Claypool JT, Simmons BA, Singer SW, et al. Comparison of soil biosolarization with mesophilic and thermophilic solid digestates on soil microbial quantity and diversity. Appl Soil Ecol. 2017;119:183–91. doi: 10.1016/j.apsoil.2017.06.016

31. Mao L, Wang Q, Yan D, Li Y, Ouyang C, Guo M, et al. Flame soil disinfestation: A novel, promising, non-chemical method to control soilborne nematodes, fungal and bacterial pathogens in China. Crop Prot. 2016;83:90–4. doi: 10.1016/j.cropro.2016.02.002

32. Tian T, Li S, Sun M. Synergistic effect of dazomet soil fumigation and clonostachys rosea against cucumber fusarium wilt. Phytopathology. 2014;104(12):1314–21. doi: 10.1094/PHYTO-11-13-0297-R 24941326

33. Raupach GS, Kloepper JW. Biocontrol of cucumber diseases in the field by plant growth-promoting rhizobacteria with and without methyl bromide fumigation. Plant Dis. 2000;84(10):1073–5. doi: 10.1094/PDIS.2000.84.10.1073 30831895

34. Ahmed AS, Sánchez CP, Candela ME. Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) to Phytophthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation. Eur J Plant Pathol. 2000;106(9):817–24. doi: 10.1023/a:1008780022925

35. Sid Ahmed A, Ezziyyani M, Pérez Sánchez C, Candela ME. Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper (Capsicum annuum) plants. Eur J Plant Pathol. 2003;109(6):633–7. doi: 10.1023/a:1024734216814

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden