Effect of an intensive 3-day social cognitive treatment (can do treatment) on control self-efficacy in patients with relapsing remitting multiple sclerosis and low disability: A single-centre randomized controlled trial

Autoři: Peter Joseph Jongen aff001;  Ghislaine A. van Mastrigt aff003;  Marco Heerings aff004;  Leo H. Visser aff005;  Rob P. Ruimschotel aff007;  Astrid Hussaarts aff007;  Lotte Duyverman aff007;  Joyce Valkenburg-Vissers aff008;  Job Cornelissen aff009;  Michel Bos aff010;  Maarten van Droffelaar aff011;  Rogier Donders aff012
Působiště autorů: Department of Community & Occupational Medicine, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands aff001;  MS4 Research Institute, Nijmegen, the Netherlands aff002;  Department of Health Services Research, CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands aff003;  National Multiple Sclerosis Foundation, Rotterdam, the Netherlands aff004;  Department of Neurology, St. Elisabeth Hospital, Tilburg, the Netherlands aff005;  University of Humanistic Studies, Utrecht, the Netherlands aff006;  Medical Psychiatric Centre PsyToBe, Rotterdam, the Netherlands aff007;  Fysiotherapie Maaspoort, 's-Hertogenbosch, the Netherlands aff008;  Dansjobs, Landsmeer, the Netherlands aff009;  Department of Neurology, St. Anna Hospital, Geldrop, the Netherlands aff010;  De Firma Drof, Utrecht, the Netherlands aff011;  Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands aff012
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0223482


In patients with chronic disorders, control self-efficacy is the confidence with managing symptoms and coping with the demands of illness. Can do treatment (CDT) is an intensive, 3-day, social cognitive theory-based, multidisciplinary treatment that focuses on identification of stressors, goal setting, exploration of boundaries, and establishment of new boundaries. An uncontrolled study showed that patients with relapsing remitting multiple sclerosis (RRMS) and low-disability had improved control self-efficacy six months after CDT. Hence, in a 6-month, single-centre, randomized (1:1), unmasked, controlled trial in RRMS patients with Expanded Disability Status Scale (EDSS) score ≤4.0, we compared CDT with no intervention and the option to receive CDT after completion of study participation. Follow-up assessments were at one, three and six months. Primary endpoint was control self-efficacy (Multiple Sclerosis Self-Efficacy Scale Control [MSSES-C] (minimum 90, maximum 900) at six months. Secondary endpoints were functional self-efficacy (MSSES-F), participation and autonomy (Impact on Participation and Autonomy questionnaire [IPA]), health-related quality of life (MS Quality of Life-54 Items questionnaire [MSQoL-54]), anxiety, depression (Hospital Anxiety and Depression Scale [HADS]) and coping skills (Utrecht Coping List [UCL]) at six months. Tertiary endpoint was care-related strain on support partners (Caregiver Strain Index) at six months. Of the 158 patients that were included, 79 were assigned to CDT and 79 to the control group. Two CDT patients discontinued treatment prematurely. Sixty-one (77%) control patients chose to receive CDT after study participation. Intention-to-treat ANCOVA analyses were performed with follow-up values as dependent, and condition, baseline values, disease duration and gender as independent variables. The mean (standard deviation [SD]) MSSES-C score in the CDT group vs. control group at baseline was 468 (162) vs. 477 (136), and at six months 578 (166) vs. 540 (135) (p = 0.100). Secondary and tertiary endpoints did not differ between groups, except for the UCL palliative reaction score being slightly higher in the CDT group (p = 0.039). On post hoc analyses the MSSES-C score at one and three months was higher in the CDT vs. control group: 597 (114) vs. 491 (131) (p<0.0001) and 561 (160) vs. 514 (143) (p = 0.018), respectively; and at one month the MSSES-F, IPA Limitations, HADS Anxiety and Depression, and MSQoL-54 Mental and Physical scores were also in favour of the CDT group. We conclude that in low-disability RRMS patients, the intensive 3-day social cognitive theory-based CDT did not improve control self-efficacy at six months follow-up compared to waitlist controls. The absence of a between-group difference at six months relates to a gradual improvement in the control group. In all, this social cognitive theory-based approach for improving self-efficacy needs further investigation before being broadly applied in RRMS patients.

Klíčová slova:

Anxiety – Depression – Multiple sclerosis – Netherlands – Nurses – Observational studies – Patients – Social cognition


1. Bandura A. Self-efficacy: toward a unifying theory of behavioral change. Psychological review. 1977;84(2):191–215. Epub 1977/03/01. doi: 10.1037//0033-295x.84.2.191 847061

2. Mitchell AJ, Benito-Leon J, Gonzalez JM, Rivera-Navarro J. Quality of life and its assessment in multiple sclerosis: integrating physical and psychological components of wellbeing. Lancet neurology. 2005;4(9):556–66. Epub 2005/08/20. doi: 10.1016/S1474-4422(05)70166-6 16109362

3. Barnwell AM, Kavanagh DJ. Prediction of psychological adjustment to multiple sclerosis. Soc Sci Med. 1997;45(3):411–8. Epub 1997/08/01. doi: 10.1016/s0277-9536(96)00356-5 9232735

4. Motl RW, Snook EM. Physical activity, self-efficacy, and quality of life in multiple sclerosis. Annals of behavioral medicine: a publication of the Society of Behavioral Medicine. 2008;35(1):111–5. Epub 2008/03/19.

5. Suh Y, Motl RW, Olsen C, Joshi I. Pilot Trial of a Social Cognitive Theory- Based Physical Activity Intervention Delivered by Non-Supervised Technology in Persons With Multiple Sclerosis. Journal of physical activity & health. 2014. Epub 2014/08/27.

6. Motl RW, Dlugonski D, Wojcicki TR, McAuley E, Mohr DC. Internet intervention for increasing physical activity in persons with multiple sclerosis. Mult Scler. 2011;17(1):116–28. Epub 2010/10/06. doi: 10.1177/1352458510383148 20921239

7. Plow M, Bethoux F, Mai K, Marcus B. A formative evaluation of customized pamphlets to promote physical activity and symptom self-management in women with multiple sclerosis. Health education research. 2014;29(5):883–96. Epub 2014/07/06. doi: 10.1093/her/cyu034 24989822

8. Kalina JT, Hinojosa J, Strober L, Bacon J, Donnelly S, Goverover Y. Randomized Controlled Trial to Improve Self-Efficacy in People With Multiple Sclerosis: The Community Reintegration for Socially Isolated Patients (CRISP) Program. The American journal of occupational therapy: official publication of the American Occupational Therapy Association. 2018;72(5):7205205030p1–p8.

9. Jongen PJ, Ruimschotel R, Heerings M, Duyverman L, Visser LH, Vissers J, et al. Improved autonomy and self-efficacy in people with multiple sclerosis after Can Do Training with Partners. Health Quality of Life Outcomes. 2014;18(4):248.

10. Jongen PJ, Heerings M, Ruimschotel R, Hussaarts A, Evers S, Duyverman L, et al. An intensive social cognitive program (can do treatment) in people with relapsing remitting multiple sclerosis and low disability: a randomized controlled trial protocol. BMC neurology. 2016;16(1):81. Epub 2016/05/29.

11. Collins CD, Ivry B, Bowen JD, Cheng EM, Dobson R, Goodin DS, et al. A comparative analysis of Patient-Reported Expanded Disability Status Scale tools. Mult Scler. 2016;22(10):1349–58. Epub 2015/11/14. doi: 10.1177/1352458515616205 26564998

12. Schwartz CE, Coulthard-Morris L, Zeng Q, Retzlaff P. Measuring self-efficacy in people with multiple sclerosis: a validation study. Archives of physical medicine and rehabilitation. 1996;77(4):394–8. Epub 1996/04/01. doi: 10.1016/s0003-9993(96)90091-x 8607766

13. Cardol M, de Haan RJ, de Jong BA, van den Bos GA, de Groot IJ. Psychometric properties of the Impact on Participation and Autonomy Questionnaire. Archives of physical medicine and rehabilitation. 2001;82(2):210–6. Epub 2001/03/10. doi: 10.1053/apmr.2001.18218 11239312

14. Vickrey BG, Hays RD, Harooni R, Myers LW, Ellison GW. A health-related quality of life measure for multiple sclerosis. Quality of life research: an international journal of quality of life aspects of treatment, care and rehabilitation. 1995;4(3):187–206. Epub 1995/06/01.

15. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta psychiatrica Scandinavica. 1983;67(6):361–70. Epub 1983/06/01. doi: 10.1111/j.1600-0447.1983.tb09716.x 6880820

16. Schreurs PJG, van de Willige G, Brosschot J, Tellegen B, Graus G. De Utrechtse Copinglijst: UCL Handleiding. Lisse, The Netherlands: Swets en Zeitlinger; 1993.

17. Robinson BC. Validation of a Caregiver Strain Index. Journal of gerontology. 1983;38(3):344–8. Epub 1983/05/01. doi: 10.1093/geronj/38.3.344 6841931

18. Motl RW, McAuley E, Sandroff BM. Longitudinal change in physical activity and its correlates in relapsing-remitting multiple sclerosis. Physical therapy. 2013;93(8):1037–48. Epub 2013/04/20. doi: 10.2522/ptj.20120479 23599354

19. Waaktaar T, Torgersen S. Self-efficacy is mainly genetic, not learned: a multiple-rater twin study on the causal structure of general self-efficacy in young people. Twin research and human genetics: the official journal of the International Society for Twin Studies. 2013;16(3):651–60. Epub 2013/04/23.

20. Cunningham JA, Kypri K, McCambridge J. Exploratory randomized controlled trial evaluating the impact of a waiting list control design. BMC medical research methodology. 2013;13:150. Epub 2013/12/10. doi: 10.1186/1471-2288-13-150 24314204

21. Jongen PJ, Kremer IEH, Hristodorova E, Evers S, Kool A, van Noort EM, et al. Adherence to Web-Based Self-Assessments in Long-Term Direct-to-Patient Research: Two-Year Study of Multiple Sclerosis Patients. Journal of medical Internet research. 2017;19(7):e249. Epub 2017/07/25. doi: 10.2196/jmir.6729 28733272

22. Van Mastrigt GA, Evers SM, Heerings M, Visser LH, Ruimschotel RP, Hussaarts A, et al. An economic evaluation attached to a single-centre, parallel group, unmasked, randomized controlled trial of a 3-day intensive social cognitive treatment (can do treatment) in patients with relapsing remitting multiple sclerosis and low disability. J Med Econ. 2019 Epub 2019/5/14 doi: 10.1080/13696998.2019.1609300 31084442

23. Jongen PJ, Heerings M, Ruimschotel R, Hussaarts A, Duyverman L, van der Zande A, et al. Intensive social cognitive treatment (can do treatment) with participation of support partners in persons with relapsing remitting multiple sclerosis: observation of improved self-efficacy, quality of life, anxiety and depression 1 year later. BMC research notes. 2016;9:375. Epub 2016/07/31. doi: 10.1186/s13104-016-2173-5 27473375

24. Jongen PJ, Ruimschotel RP, Museler-Kreijns YM, Dragstra T, Duyverman L, Valkenburg-Vissers J, et al. Improved health-related quality of life, participation, and autonomy in patients with treatment-resistant chronic pain after an intensive social cognitive intervention with the participation of support partners. Journal of pain research. 2017;10:2725–38. Epub 2017/12/15. doi: 10.2147/JPR.S137609 29238216

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden