#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Analytical validation of the Target Selector ctDNA platform featuring single copy detection sensitivity for clinically actionable EGFR, BRAF, and KRAS mutations


Autoři: Jason C. Poole aff001;  Shan-Fu Wu aff001;  Timothy T. Lu aff001;  Cecile Rose T. Vibat aff001;  Anh Pham aff001;  Errin Samuelsz aff001;  Manisha Patel aff001;  Jeffrey Chen aff001;  Tony Daher aff001;  Veena M. Singh aff001;  Lyle J. Arnold aff001
Působiště autorů: Biocept, Inc., San Diego, California, United States of America aff001;  Aegea Biotechnologies, Inc., San Diego, California, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0223112

Souhrn

Background

Personalized medicine requires accurate molecular profiling for targeted therapy decisions. Insufficient tissue yield or tumor heterogeneity frequently limits the correct tissue biomarker determination. As a noninvasive complement to traditional tissue biopsies, liquid biopsies detect and track cancer driver mutations from biofluids (e.g., blood, urine). Here we present the analytical validation of Target Selector ctDNA assays capable of single mutant DNA copy detection.

Methods

The Target Selector ctDNA assay applies a patented Switch-Blocker technology to suppress amplification of background (wild-type) WT alleles, while allowing specific amplification of very low frequency mutant alleles. In contrast to allele specific enrichment technologies like ddPCR, one Switch-Blocker inhibits amplification of a DNA target up to 15 bp in length (e.g., one Switch-Blocker covers all KRAS exon 2, codon 12 and 13 variants). Target enrichment is achieved through a quantitative PCR reaction; subsequent DNA sequencing confirms mutation identity. Analytical validation with cancer cell line DNA was conducted by three independent operators using five instruments across five days.

Results

A total of 3086 samples were tested on EGFR, BRAF and KRAS Target Selector ctDNA assays, with EGFR WT as a reference. All assays showed >99% analytical sensitivity and specificity. Single mutant copy detection is confirmed by experimental data and theoretical estimates. In the presence of 14000 WT DNA copies, limits of detection were: EGFR Del19, 0.01%; EGFR L858R, 0.02%; EGFR T790M, 0.01%; BRAF V600E, 0.01%; KRAS G12C, 0.02%. Inter- and intra-assay analyses showed r2>0.94, suggesting consistent performance among operational variables. Healthy donor samples (100 tests) showed clinical specificity at >99%. Finally, Target Selector clinical experience data of >2200 patient samples is consistent with published tissue mutation prevalence.

Conclusions

Highly sensitive Target Selector ctDNA assays with single mutant copy detection and limit of detection at 0.02% or better enable accurate molecular profiling vital for disease management.

Klíčová slova:

Biomarkers – Biopsy – Blood – Cancer treatment – Mutation – Mutation detection – Polymerase chain reaction – Circulating tumor DNA


Zdroje

1. Russo M, Siravegna G, Blaszkowsky LS, Corti G, Crisafulli G, Ahronian LG, et al. Tumor Heterogeneity and Lesion-Specific Response to Targeted Therapy in Colorectal Cancer. Cancer discovery. 2016;6(2):147–53. doi: 10.1158/2159-8290.CD-15-1283 26644315

2. Sacher AG, Janne PA, Oxnard GR. Management of Acquired Resistance to Epidermal Growth Factor Receptor Kinase Inhibitors in Patients with Advanced Non-Small Cell Lung Cancer. Cancer. 2014;120(15):2289–98. doi: 10.1002/cncr.28723 24752335

3. Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, et al. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment with Targeted Tyrosine Kinase Inhibitors: Guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. The Journal of molecular diagnostics: JMD. 2018;20(2):129–59. doi: 10.1016/j.jmoldx.2017.11.004 29398453

4. Nccn Guidelines for Non-Small Cell Lung Cancer, Version 2.2019—November 21, 2018.

5. Gutierrez ME, Choi K, Lanman RB, Licitra EJ, Skrzypczak SM, Pe Benito R, et al. Genomic Profiling of Advanced Non-Small Cell Lung Cancer in Community Settings: Gaps and Opportunities. Clinical lung cancer. 2017;18(6):651–9. doi: 10.1016/j.cllc.2017.04.004 28479369

6. Cordovano G. Liquid Biopsy Research Should Include the Perspectives of Patients Like Me. STAT News. 2019 [Available from: https://www.statnews.com/2019/03/18/liquid-biopsy-patient-perspective/.

7. Jekunen AP. Role of Rebiopsy in Relapsed Non-Small Cell Lung Cancer for Directing Oncology Treatments. Journal of oncology. 2015;2015:809835. doi: 10.1155/2015/809835 25699082

8. Hong DK, Blauwkamp TA, Kertesz M, Bercovici S, Truong C, Banaei N. Liquid Biopsy for Infectious Diseases: Sequencing of Cell-Free Plasma to Detect Pathogen DNA in Patients with Invasive Fungal Disease. Diagnostic microbiology and infectious disease. 2018;92(3):210–3. doi: 10.1016/j.diagmicrobio.2018.06.009 30017314

9. Romero R, Mahoney MJ. Noninvasive Prenatal Testing and Detection of Maternal Cancer. Jama. 2015;314(2):131–3. doi: 10.1001/jama.2015.7523 26168080

10. Verhoeven J, Boer K, Van Schaik RHN, Manintveld OC, Huibers MMH, Baan CC, et al. Liquid Biopsies to Monitor Solid Organ Transplant Function: A Review of New Biomarkers. Therapeutic drug monitoring. 2018;40(5):515–25. doi: 10.1097/FTD.0000000000000549 29957668

11. Hofste L, Vink A, van Kuik J, Siera-de Koning E, Ahmadi F, de Jonge N, et al. Liquid Biopsies: Non-Invasive Rejection Detection after Heart Transplantation. The Journal of Heart and Lung Transplantation. 2017;36(4):S136.

12. Aggarwal C, Thompson JC, Black TA, Katz SI, Fan R, Yee SS, et al. Clinical Implications of Plasma-Based Genotyping with the Delivery of Personalized Therapy in Metastatic Non–Small Cell Lung Cancer. JAMA oncology. 2018.

13. Dasari A, Grothey A, Kopetz S. Circulating Tumor DNA-Defined Minimal Residual Disease in Solid Tumors: Opportunities to Accelerate the Development of Adjuvant Therapies. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2018:Jco2018789032.

14. Almodovar K, Iams WT, Meador CB, Zhao Z, York S, Horn L, et al. Longitudinal Cell-Free DNA Analysis in Patients with Small Cell Lung Cancer Reveals Dynamic Insights into Treatment Efficacy and Disease Relapse. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer. 2018;13(1):112–23.

15. Perez-Callejo D, Romero A, Provencio M, Torrente M. Liquid Biopsy Based Biomarkers in Non-Small Cell Lung Cancer for Diagnosis and Treatment Monitoring. Translational lung cancer research. 2016;5(5):455–65. doi: 10.21037/tlcr.2016.10.07 27826527

16. Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating Liquid Biopsies into the Management of Cancer. Nature reviews Clinical oncology. 2017;14(9):531–48. doi: 10.1038/nrclinonc.2017.14 28252003

17. Alix-Panabieres C, Bartkowiak K, Pantel K. Functional Studies on Circulating and Disseminated Tumor Cells in Carcinoma Patients. Molecular oncology. 2016;10(3):443–9. doi: 10.1016/j.molonc.2016.01.004 26847851

18. Bremnes RM, Sirera R, Camps C. Circulating Tumour-Derived DNA and Rna Markers in Blood: A Tool for Early Detection, Diagnostics, and Follow-Up? Lung cancer (Amsterdam, Netherlands). 2005;49(1):1–12.

19. Lim M, Kim C-J, Sunkara V, Kim M-H, Cho Y-K. Liquid Biopsy in Lung Cancer: Clinical Applications of Circulating Biomarkers (Ctcs and Ctdna). Micromachines. 2018;9(3):100.

20. Hench IB, Hench J, Tolnay M. Liquid Biopsy in Clinical Management of Breast, Lung, and Colorectal Cancer. Frontiers in medicine. 2018;5:9. doi: 10.3389/fmed.2018.00009 29441349

21. Arnold LJ, inventorMethods for Detecting Nucleic Acid Sequence Variants, Us Patent 9,834,817 and Foreign Equivalents.2017 December 5, 2017.

22. Hoffman JI. The Poisson Distribution. Biostatistics for Medical and Biomedical Practitioners: Academic Press; 2015. p. 259–78.

23. Wallisch P, Lusignan ME, Benayoun MD, Baker TI, Dickey AS, Hatsopoulos NG. Mathematics and Statistics Tutorial: Section 3.3.3 the Poisson Distribution. Matlab for Neuroscientists: An Introduction to Scientific Computing in Matlab: Academic Press; 2014.

24. Ferrer I, Zugazagoitia J, Herbertz S, John W, Paz-Ares L, Schmid-Bindert G. Kras-Mutant Non-Small Cell Lung Cancer: From Biology to Therapy. Lung cancer (Amsterdam, Netherlands). 2018;124:53–64.

25. Paik PK, Arcila ME, Fara M, Sima CS, Miller VA, Kris MG, et al. Clinical Characteristics of Patients with Lung Adenocarcinomas Harboring Braf Mutations. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2011;29(15):2046–51.

26. Cardarella S, Ogino A, Nishino M, Butaney M, Shen J, Lydon C, et al. Clinical, Pathologic, and Biologic Features Associated with Braf Mutations in Non-Small Cell Lung Cancer. Clinical cancer research: an official journal of the American Association for Cancer Research. 2013;19(16):4532–40.

27. Midha A, Dearden S, McCormack R. Egfr Mutation Incidence in Non-Small-Cell Lung Cancer of Adenocarcinoma Histology: A Systematic Review and Global Map by Ethnicity (Mutmapii). American journal of cancer research. 2015;5(9):2892–911. 26609494

28. Ladanyi M, Pao W. Lung Adenocarcinoma: Guiding Egfr-Targeted Therapy and Beyond. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc. 2008;21 Suppl 2:S16–22.

29. Gazdar AF. Activating and Resistance Mutations of Egfr in Non-Small-Cell Lung Cancer: Role in Clinical Response to Egfr Tyrosine Kinase Inhibitors. Oncogene. 2009;28 Suppl 1:S24–31.

30. Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, et al. Analysis of Tumor Specimens at the Time of Acquired Resistance to Egfr-Tki Therapy in 155 Patients with Egfr-Mutant Lung Cancers. Clinical cancer research: an official journal of the American Association for Cancer Research. 2013;19(8):2240–7.

31. Ji W, Choi CM, Rho JK, Jang SJ, Park YS, Chun SM, et al. Mechanisms of Acquired Resistance to Egfr-Tyrosine Kinase Inhibitor in Korean Patients with Lung Cancer. BMC cancer. 2013;13:606. doi: 10.1186/1471-2407-13-606 24369725

32. Riely GJ, Kris MG, Rosenbaum D, Marks J, Li A, Chitale DA, et al. Frequency and Distinctive Spectrum of Kras Mutations in Never Smokers with Lung Adenocarcinoma. Clinical cancer research: an official journal of the American Association for Cancer Research. 2008;14(18):5731–4.

33. Roman M, Baraibar I, Lopez I, Nadal E, Rolfo C, Vicent S, et al. Kras Oncogene in Non-Small Cell Lung Cancer: Clinical Perspectives on the Treatment of an Old Target. Molecular cancer. 2018;17(1):33. doi: 10.1186/s12943-018-0789-x 29455666

34. Eberhard DA, Johnson BE, Amler LC, Goddard AD, Heldens SL, Herbst RS, et al. Mutations in the Epidermal Growth Factor Receptor and in Kras Are Predictive and Prognostic Indicators in Patients with Non-Small-Cell Lung Cancer Treated with Chemotherapy Alone and in Combination with Erlotinib. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2005;23(25):5900–9.

35. Baik CS, Myall NJ, Wakelee HA. Targeting Braf-Mutant Non-Small Cell Lung Cancer: From Molecular Profiling to Rationally Designed Therapy. The oncologist. 2017;22(7):786–96. doi: 10.1634/theoncologist.2016-0458 28487464

36. Arrieta O, Cardona AF, Martin C, Mas-Lopez L, Corrales-Rodriguez L, Bramuglia G, et al. Updated Frequency of Egfr and Kras Mutations in Nonsmall-Cell Lung Cancer in Latin America: The Latin-American Consortium for the Investigation of Lung Cancer (Clicap). Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer. 2015;10(5):838–43.

37. Li M, Diehl F, Dressman D, Vogelstein B, Kinzler KW. Beaming up for Detection and Quantification of Rare Sequence Variants. Nature methods. 2006;3(2):95–7. doi: 10.1038/nmeth850 16432518

38. Malapelle U, Pisapia P, Rocco D, Smeraglio R, di Spirito M, Bellevicine C, et al. Next Generation Sequencing Techniques in Liquid Biopsy: Focus on Non-Small Cell Lung Cancer Patients. Translational lung cancer research. 2016;5(5):505–10. doi: 10.21037/tlcr.2016.10.08 27826531

39. Lanman RB, Mortimer SA, Zill OA, Sebisanovic D, Lopez R, Blau S, et al. Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA. PloS one. 2015;10(10):e0140712. doi: 10.1371/journal.pone.0140712 26474073

40. Stetson D, Ahmed A, Xu X, Nuttall BR, Lubinski TJ, Johnson JH, et al. Orthogonal Comparison of Four Plasma Ngs Tests with Tumor Suggests Technical Factors Are a Major Source of Assay Discordance. JCO Precision Oncology. 2019;3:1–9.


Článek vyšel v časopise

PLOS One


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#