Endothelial nitric oxide synthase limits host immunity to control disseminated Candida albicans infections in mice

Autoři: Dhammika H. Navarathna aff001;  Michail S. Lionakis aff002;  David D. Roberts aff001
Působiště autorů: Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America aff001;  Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0223919


Three isoforms of nitric oxide synthase (NOS) occur in mammals. High levels of NO produced by NOS2/iNOS can protect against bacterial and parasitic infections, but the role of NOS in fungal innate immunity is less clear. Compared to wild type mice, Nos3-/- mice showed significantly higher survival of candidemia caused by Candida albicans SC5314. NOS3/eNOS is expressed by endothelial cells in the kidney, and colonization of this organ was decreased during the sub-acute stage of disseminated candidiasis. Nos3-/- mice more rapidly eliminated Candida from the renal cortex and exhibited more balanced local inflammatory reactions, with similar macrophage but less neutrophil infiltration than in infected wild type. Levels of the serum cytokines IL-9, IL-12, IL-17 and chemokines GM-CSF, MIP1α, and MIP1β were significantly elevated, and IL-15 was significantly lower in infected Nos3-/- mice. Spleens of infected Nos3-/- mice had significantly more Th2 and Th9 but not other CD4+ T cells compared with wild type. Inflammatory genes associated with leukocyte chemotaxis, IL-1 signaling, TLR signaling and Th1 and Th2 cell differentiation pathways were significantly overexpressed in infected Nos3-/- kidneys, with Nos2 being the most strongly induced. Conversely, the general NOS inhibitor NG-nitro-L-arginine methyl ester increased virulence in the mouse candidemia model, suggesting that iNOS contributes to the protective mechanism in infected Nos3-/- mice. By moderating neutrophil infiltration, the absence of eNOS may reduce the collateral damage to kidney cortex, and Th-9 CD4+ cells may enhance clearance of the infection. These data suggest that selective eNOS inhibition could mitigate candidemia by a combination of systemic and local responses that promote a more effective host immune response.

Klíčová slova:

Candida albicans – Candidiasis – Cytokines – Flow cytometry – Immune response – Inflammation – Kidneys – Nitric oxide


1. Cioni C, Angiulli E, Toni M (2019) Nitric Oxide and the Neuroendocrine Control of the Osmotic Stress Response in Teleosts. Int J Mol Sci 20.

2. Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A 87: 682–685. doi: 10.1073/pnas.87.2.682 1689048

3. Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347: 768–770. doi: 10.1038/347768a0 1700301

4. Teichert AM, Miller TL, Tai SC, Wang Y, Bei X, Robb GB, et al. (2000) In vivo expression profile of an endothelial nitric oxide synthase promoter-reporter transgene. Am J Physiol Heart Circ Physiol 278: H1352–1361. doi: 10.1152/ajpheart.2000.278.4.H1352 10749733

5. Pointer MA, Daumerie G, Bridges L, Yancey S, Howard K, Davis W, et al. (2012) Physiological stress increases renal injury in eNOS-knockout mice. Hypertens Res 35: 318–324. doi: 10.1038/hr.2011.185 22170389

6. You H, Gao T, Cooper TK, Morris SM Jr., Awad AS (2013) Arginase inhibition mediates renal tissue protection in diabetic nephropathy by a nitric oxide synthase 3-dependent mechanism. Kidney Int 84: 1189–1197. doi: 10.1038/ki.2013.215 23760286

7. Advani A, Huang Q, Thai K, Advani SL, White KE, Kelly DJ, et al. (2011) Long-term administration of the histone deacetylase inhibitor vorinostat attenuates renal injury in experimental diabetes through an endothelial nitric oxide synthase-dependent mechanism. Am J Pathol 178: 2205–2214. doi: 10.1016/j.ajpath.2011.01.044 21514434

8. Jamaati H, Mortaz E, Pajouhi Z, Folkerts G, Movassaghi M, Moloudizargari M, et al. (2017) Nitric Oxide in the Pathogenesis and Treatment of Tuberculosis. Front Microbiol 8: 2008. doi: 10.3389/fmicb.2017.02008 29085351

9. Nahrevanian H (2009) Involvement of nitric oxide and its up/down stream molecules in the immunity against parasitic infections. Braz J Infect Dis 13: 440–448. 20464336

10. Ogawa R, Pacelli R, Espey MG, Miranda KM, Friedman N, Kim SM, et al. (2001) Comparison of control of Listeria by nitric oxide redox chemistry from murine macrophages and NO donors: insights into listeriocidal activity of oxidative and nitrosative stress. Free Radic Biol Med 30: 268–276. doi: 10.1016/s0891-5849(00)00470-6 11165873

11. Kaplan SS, Lancaster JR Jr., Basford RE, Simmons RL (1996) Effect of nitric oxide on staphylococcal killing and interactive effect with superoxide. Infect Immun 64: 69–76. 8557376

12. Stasko N, McHale K, Hollenbach SJ, Martin M, Doxey R (2018) Nitric Oxide-Releasing Macromolecule Exhibits Broad-Spectrum Antifungal Activity and Utility as a Topical Treatment for Superficial Fungal Infections. Antimicrob Agents Chemother 62.

13. Tillmann A, Gow NA, Brown AJ (2011) Nitric oxide and nitrosative stress tolerance in yeast. Biochem Soc Trans 39: 219–223. doi: 10.1042/BST0390219 21265777

14. Farah CS, Saunus JM, Hu Y, Kazoullis A, Ashman RB (2009) Gene targeting demonstrates that inducible nitric oxide synthase is not essential for resistance to oral candidiasis in mice, or for killing of Candida albicans by macrophages in vitro. Oral Microbiol Immunol 24: 83–88. doi: 10.1111/j.1399-302X.2008.00462.x 19121076

15. Gonzalez A, Hung CY, Cole GT (2011) Nitric oxide synthase activity has limited influence on the control of Coccidioides infection in mice. Microb Pathog 51: 161–168. doi: 10.1016/j.micpath.2011.03.013 21513788

16. Collette JR, Zhou H, Lorenz MC (2014) Candida albicans suppresses nitric oxide generation from macrophages via a secreted molecule. PLoS One 9: e96203. doi: 10.1371/journal.pone.0096203 24755669

17. Ullmann BD, Myers H, Chiranand W, Lazzell AL, Zhao Q, Vega LA, et al. (2004) Inducible defense mechanism against nitric oxide in Candida albicans. Eukaryot Cell 3: 715–723. doi: 10.1128/EC.3.3.715-723.2004 15189992

18. Wagener J, MacCallum DM, Brown GD, Gow NA (2017) Candida albicans Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions. MBio 8.

19. Molero G, Guillen MV, Martinez-Solano L, Gil C, Pla J, Nombela C, et al. (2005) The importance of the phagocytes’ innate response in resolution of the infection induced by a low virulent Candida albicans mutant. Scand J Immunol 62: 224–233. doi: 10.1111/j.1365-3083.2005.01657.x 16179009

20. Fernandes KS, Neto EH, Brito MM, Silva JS, Cunha FQ, Barja-Fidalgo C (2008) Detrimental role of endogenous nitric oxide in host defence against Sporothrix schenckii. Immunology 123: 469–479. doi: 10.1111/j.1365-2567.2007.02712.x 18194265

21. Gillum AM, Tsay EY, Kirsch DR (1984) Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198: 179–182. doi: 10.1007/bf00328721 6394964

22. Navarathna DH, Hornby JM, Hoerrmann N, Parkhurst AM, Duhamel GE, Nickerson KW (2005) Enhanced pathogenicity of Candida albicans pre-treated with subinhibitory concentrations of fluconazole in a mouse model of disseminated candidiasis. J Antimicrob Chemother 56: 1156–1159. doi: 10.1093/jac/dki383 16239285

23. Ridnour LA, Cheng RY, Weiss JM, Kaur S, Soto-Pantoja DR, Basudhar D, et al. (2015) NOS Inhibition Modulates Immune Polarization and Improves Radiation-Induced Tumor Growth Delay. Cancer Res 75: 2788–2799. doi: 10.1158/0008-5472.CAN-14-3011 25990221

24. Navarathna DH, Hornby JM, Krishnan N, Parkhurst A, Duhamel GE, Nickerson KW (2007) Effect of farnesol on a mouse model of systemic candidiasis, determined by use of a DPP3 knockout mutant of Candida albicans. Infect Immun 75: 1609–1618. doi: 10.1128/IAI.01182-06 17283095

25. Lampson BL, Kendall SD, Ancrile BB, Morrison MM, Shealy MJ, Barrientos KS, et al. (2012) Targeting eNOS in pancreatic cancer. Cancer Res 72: 4472–4482. doi: 10.1158/0008-5472.CAN-12-0057 22738914

26. Raab SS, Cheville JC, Bottles K, Cohen MB (1994) Utility of Gomori methenamine silver stains in bronchoalveolar lavage specimens. Mod Pathol 7: 599–604. 7524071

27. Nickerson WJ (1953) Reduction of inorganic substances by yeasts. I. Extracellular reduction of sulfite by species of Candida. J Infect Dis 93: 43–56. doi: 10.1093/infdis/93.1.43 13069768

28. Lionakis MS, Lim JK, Lee CC, Murphy PM (2011) Organ-specific innate immune responses in a mouse model of invasive candidiasis. J Innate Immun 3: 180–199. doi: 10.1159/000321157 21063074

29. Fortina P, Surrey S (2008) Digital mRNA profiling. Nat Biotechnol 26: 293–294. doi: 10.1038/nbt0308-293 18327237

30. Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, et al. (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 26: 317–325. doi: 10.1038/nbt1385 18278033

31. D’Angelo JA, Dehlink E, Platzer B, Dwyer P, Circu ML, Garay J, et al. (2010) The cystine/glutamate antiporter regulates dendritic cell differentiation and antigen presentation. J Immunol 185: 3217–3226. doi: 10.4049/jimmunol.1001199 20733204

32. Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, et al. (2010) Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141: 668–681. doi: 10.1016/j.cell.2010.04.018 20451243

33. Garay J, D’Angelo JA, Park Y, Summa CM, Aiken ML, Morales E, et al. (2010) Crosstalk between PKA and Epac regulates the phenotypic maturation and function of human dendritic cells. J Immunol 185: 3227–3238. doi: 10.4049/jimmunol.0903066 20729327

34. Navarathna DH, Nickerson KW, Duhamel GE, Jerrels TR, Petro TM (2007) Exogenous farnesol interferes with the normal progression of cytokine expression during candidiasis in a mouse model. Infect Immun 75: 4006–4011. doi: 10.1128/IAI.00397-07 17517874

35. Navarathna DH, Stein EV, Lessey-Morillon EC, Nayak D, Martin-Manso G, Roberts DD (2015) CD47 Promotes Protective Innate and Adaptive Immunity in a Mouse Model of Disseminated Candidiasis. PLoS One 10: e0128220. doi: 10.1371/journal.pone.0128220 26010544

36. Navarathna DH, Lionakis MS, Lizak MJ, Munasinghe J, Nickerson KW, Roberts DD (2012) Urea amidolyase (DUR1,2) contributes to virulence and kidney pathogenesis of Candida albicans. PLoS One 7: e48475. doi: 10.1371/journal.pone.0048475 23144764

37. Richardson JP, Moyes DL (2015) Adaptive immune responses to Candida albicans infection. Virulence 6: 327–337. doi: 10.1080/21505594.2015.1004977 25607781

38. Guo Y, Chang Q, Cheng L, Xiong S, Jia X, Lin X, et al. (2018) C-Type Lectin Receptor CD23 Is Required for Host Defense against Candida albicans and Aspergillus fumigatus Infection. J Immunol 201: 2427–2440. doi: 10.4049/jimmunol.1800620 30185519

39. Connelly L, Jacobs AT, Palacios-Callender M, Moncada S, Hobbs AJ (2003) Macrophage endothelial nitric-oxide synthase autoregulates cellular activation and pro-inflammatory protein expression. J Biol Chem 278: 26480–26487. doi: 10.1074/jbc.M302238200 12740377

40. Lee HJ, Lee DY, Mariappan MM, Feliers D, Ghosh-Choudhury G, Abboud HE, et al. (2017) Hydrogen sulfide inhibits high glucose-induced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells. J Biol Chem 292: 5665–5675. doi: 10.1074/jbc.M116.766758 28188286

41. Park JS, Choi HI, Bae EH, Ma SK, Kim SW (2017) Small heterodimer partner attenuates hydrogen peroxide-induced expression of cyclooxygenase-2 and inducible nitric oxide synthase by suppression of activator protein-1 and nuclear factor-kappaB in renal proximal tubule epithelial cells. Int J Mol Med 39: 701–710. doi: 10.3892/ijmm.2017.2883 28204833

42. Sumayao R Jr., Newsholme P, McMorrow T (2018) Inducible nitric oxide synthase inhibitor 1400W increases Na(+), K(+) -ATPase levels and activity and ameliorates mitochondrial dysfunction in Ctns null kidney proximal tubular epithelial cells. Clin Exp Pharmacol Physiol 45: 1149–1160. doi: 10.1111/1440-1681.12998 29924417

43. Navarathna DH, Munasinghe J, Lizak MJ, Nayak D, McGavern DB, Roberts DD (2013) MRI confirms loss of blood-brain barrier integrity in a mouse model of disseminated candidiasis. NMR Biomed 26: 1125–1134. doi: 10.1002/nbm.2926 23606437

44. Nakayama T, Sato W, Kosugi T, Zhang L, Campbell-Thompson M, Yoshimura A, et al. (2009) Endothelial injury due to eNOS deficiency accelerates the progression of chronic renal disease in the mouse. Am J Physiol Renal Physiol 296: F317–327. doi: 10.1152/ajprenal.90450.2008 19036847

45. Netea MG, Joosten LA, van der Meer JW, Kullberg BJ, van de Veerdonk FL (2015) Immune defence against Candida fungal infections. Nat Rev Immunol 15: 630–642. doi: 10.1038/nri3897 26388329

46. Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ (2018) Invasive candidiasis. Nat Rev Dis Primers 4: 18026. doi: 10.1038/nrdp.2018.26 29749387

47. Navarathna DH, Roberts DD, Munasinghe J, Lizak MJ (2016) Imaging Candida Infections in the Host. Methods Mol Biol 1356: 69–78. doi: 10.1007/978-1-4939-3052-4_6 26519066

48. Poljakovic M, Persson K (2003) Urinary tract infection in iNOS-deficient mice with focus on bacterial sensitivity to nitric oxide. Am J Physiol Renal Physiol 284: F22–31. doi: 10.1152/ajprenal.00101.2002 12494944

49. Becker KL, Rosler B, Wang X, Lachmandas E, Kamsteeg M, Jacobs CW, et al. (2016) Th2 and Th9 responses in patients with chronic mucocutaneous candidiasis and hyper-IgE syndrome. Clin Exp Allergy 46: 1564–1574. doi: 10.1111/cea.12787 27474157

50. van de Veerdonk FL, Gresnigt MS, Kullberg BJ, van der Meer JW, Joosten LA, Netea MG (2009) Th17 responses and host defense against microorganisms: an overview. BMB Rep 42: 776–787. doi: 10.5483/bmbrep.2009.42.12.776 20044948

51. Shi Y, Liu CH, Roberts AI, Das J, Xu G, Ren G, et al. (2006) Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don’t know. Cell Res 16: 126–133. doi: 10.1038/sj.cr.7310017 16474424

52. Sherry B, Espinoza M, Manogue KR, Cerami A (1998) Induction of the chemokine beta peptides, MIP-1 alpha and MIP-1 beta, by lipopolysaccharide is differentially regulated by immunomodulatory cytokines gamma-IFN, IL-10, IL-4, and TGF-beta. Mol Med 4: 648–657. 9848081

53. Torosantucci A, Chiani P, Cassone A (2000) Differential chemokine response of human monocytes to yeast and hyphal forms of Candida albicans and its relation to the beta-1,6 glucan of the fungal cell wall. J Leukoc Biol 68: 923–932. 11129662

54. Marcais A, Cherfils-Vicini J, Viant C, Degouve S, Viel S, Fenis A, et al. (2014) The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat Immunol 15: 749–757. doi: 10.1038/ni.2936 24973821

55. Navarathna DH, Pathirana RU, Lionakis MS, Nickerson KW, Roberts DD (2016) Candida albicans ISW2 Regulates Chlamydospore Suspensor Cell Formation and Virulence In Vivo in a Mouse Model of Disseminated Candidiasis. PLoS One 11: e0164449. doi: 10.1371/journal.pone.0164449 27727302

56. Dunne A, O’Neill LA (2003) The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE 2003: re3.

57. Ashman RB, Vijayan D, Wells CA (2011) IL-12 and related cytokines: function and regulatory implications in Candida albicans infection. Clin Dev Immunol 2011: 686597. doi: 10.1155/2011/686597 21052539

58. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 88: 4651–4655. doi: 10.1073/pnas.88.11.4651 1675786

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden