Visual encounters on line transect surveys under-detect carnivore species: Implications for assessing distribution and conservation status


Autoři: Jose M. V. Fragoso aff001;  Fernando Gonçalves aff001;  Luiz F. B. Oliveira aff002;  Han Overman aff003;  Taal Levi aff004;  Kirsten M. Silvius aff005
Působiště autorů: Stanford University, Stanford, CA, United States of America aff001;  Departamento de Vertebrados, Museu Nacional, UFRJ, RJ, Brazil aff002;  Environmental and Forest Biology, State University of New York-College of Environmental Science and Forestry, Syracuse, NY, United States of America aff003;  Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, United States of America aff004;  Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, United States of America aff005
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223922

Souhrn

We compared the distribution and occurrence of 15 carnivore species with data collected monthly over three years by trained native trackers using both sign surveys and an encounter-based, visual-distance method in a well-preserved region of southern Guyana (Amazon / Guiana Shield). We found that a rigorously applied sign-based method was sufficient to describe the status of most carnivore species populations, including rare species such as jaguar and bush dog. We also found that even when accumulation curves for direct visual encounter data reached an asymptote, customarily an indication that sufficient sampling has occurred to describe populations, animal occurrence and distribution were grossly underestimated relative to the results of sign data. While other researchers have also found that sign are better than encounters or camera traps for large felids, our results are important in documenting the failure of even intensive levels of effort to raise encounter rates sufficiently to enable statistical analysis, and in describing the relationship between encounter and sign data for an entire community of carnivores including felids, canids, procyonids, and mustelids.

Klíčová slova:

Carnivora – Cryptic speciation – Forests – Jaguars – Otters – Vertebrates – Carnivory – Pumas


Zdroje

1. Eisenberg C. The carnivore way: coexisting with and conserving North America’s predators. 1st ed. Washington, DC: Island Press; 2014.

2. Preisser EL. Field evidence for a rapidly cascading underground food web. Ecology. 2003;84(4):869–74. doi: 10.1890/0012-9658

3. Ripple WJ, Beschta RL. Linking a cougar decline, trophic cascade, and catastrophic regime shift in Zion National Park. Biol Conserv. 2006;133(4):397–408.

4. Terborgh JW. Toward a trophic theory of species diversity. Proc Natl Acad Sci U S A. 2015;112(37):11415–11422. doi: 10.1073/pnas.1501070112 26374788

5. Kruuk H. Hunter and Hunted. 1st ed. Cambridge, UK: Cambridge University Press; 2003.

6. Ray J, Redford KH, Steneck R, Berger J, editors. Large carnivores and the conservation of biodiversity. Washington: Island Press; 2013.

7. Athreya V, Odden M, Linnell JDC, Krishnaswamy J, Karanth U. Big Cats in Our Backyards: Persistence of large carnivores in a human dominated landscape in India. PLoS ONE 2013. doi: 10.1371/journal.pone.0057872 23483933

8. Jennelle CS, Runge MC, MacKenzie DI. The use of photographic rates to estimate densities of tigers and other cryptic mammals: a comment on misleading conclusions. Anim Conserv. 2002;5(2):119–20. doi: 10.1017/S1367943002002160

9. Karanth KU, Nichols JD, Seidensticker J, Dinerstein E, David Smith JL, et al. Science deficiency in conservation practice: the monitoring of tiger populations in India. Anim Conserv. 2003;6:141–146.

10. Carroll C, Noss RF, Paquet PC. Carnivores as focal species for conservation planning in the Rocky Mountain region. Ecol Appl. 2001;11:961–980.

11. Cordeiro JL, Fragoso JMV, Crawshaw D, Oliveira LFB. Lowland tapir distribution and habitat loss in South America. PeerJ. 2016; doi: 10.7717/peerj.2456 27672509

12. Kramer‐Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib. 2001;19:1366–1379.

13. Moilanen A. Implications of empirical data quality to metapopulation model parameter estimation and application. Oikos. 2002; 96: 516–530. doi: 10.1034/j.1600-0706.2002.960313.x

14. Tyre AJ, Tenhumberg B, Field SA, Niejalke D, Parris K, Possingham HP. Improving precision and reducing bias in biological surveys: estimating false negative error rates. Ecol Appl. 2003;13:1790–1801. doi: 10.1890/02-5078

15. Gu W, Swihart RK. Absent or undetected? Effects of non-detection of species occurrence on wildlife–habitat models. Biol Conserv. 2004;116(2):195–203.

16. MacKenzie DI, Nichols JD, Royle JA, Pollock KP, Bailey LL, Hines JE. Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. San Diego,CA: Academic Press; 2006.

17. Fragoso JMV, Levi T, Oliveira LFB, Luzar JB, Overman H, Read JM, Silvius KM. Line transect surveys under detect terrestrial mammals: implications for the sustainability of subsistence hunting. Plos One 2016; doi: 10.1371/journal.pone.0152659 27074025

18. Benchimol M., von Mühlen EM, Venticinque EM. Lessons from a community-based program to monitor forest vertebrates in the Brazilian Amazon. Environ Manag. 2017; 60: 476. doi: 10.1007/s00267-017-0888-2 28500357

19. Richard-Hansen C, Jaouen G, Denis T, Brunaux O, Marcon E, Guitet S. Landscape patterns influence communities of medium-to large-bodied vertebrates in undisturbed terra firme forests of French Guiana. J Trop Ecol 2015;31(5): 423–436.

20. Richard-Hansen C, Surugue N, Khazraie K, Le Noc M, Grenand P. Long-term fluctuations of white-lipped peccary populations in French Guiana. Mammalia. 2014;78(3): 291–301.

21. Barnes RFW. How reliable are dung counts for estimating elephant numbers? Afr J Ecol 2001;39:1–9.

22. McNeilage A, Plumptre AJ, Brock-Doyle A., Vedder A. Bwindi Impenetrable National Park, Uganda: gorilla census 1997. Oryx. 2001;35:39–47.

23. Constantino PAL, Fortini LB, Kaxinawa FRS, Kaxinawa AM, Kaxinawa ES, Kaxinawa APet al. Indigenous collaborative research for wildlife management in Amazonia: The case of the Kaxinawá, Acre, Brazil. Biol Conserv. 2008;141:2718–2729.

24. Luzar JB, Silvius KM, Overman J, Giery ST, Read JN, Fragoso JMV. Large-scale environmental monitoring by indigenous peoples. BioScience. 2011;61:771–78.

25. Beirne C, Meier AC, Mbele AE, Menie GM, Froese G, Okouyi J. et al. Participatory monitoring reveals village-centered gradients of mammalian defaunation in central Africa. Biol Conserv. 2019;233:228–238.

26. Keeping D, Burger JH, Keitsile AO, Gielen MC, Mudongo E, Wallgren M et al. Can trackers count free-ranging wildlife as effectively and efficiently as conventional aerial survey and distance sampling? Implications for citizen science in the Kalahari, Botswana. Biol Conserv. 2018;223:156–169.

27. Duckworth JW. The difficulty of estimating population densities of nocturnal forest mammals from transect counts of animals. J Zool. 1998;246: 466–468. doi: 10.1111/j.1469-7998.1998.tb00183.x

28. Balme GA, Hunter LTB, Slotow R. Evaluating Methods for counting cryptic carnivores. J Wildl Manage. 2009;73:433–441. doi: 10.2193/2007-368

29. Di Bitetti MS, Paviola A, Ferrari CA, De Angelo C, Di Blanco Y. Differential responses to hunting in two sympatric species of brocket Deer (Mazama americana and M. nana). Biotropica. 2008;40:636–645.

30. Carter NH, Shrestha BK, Karki JB, Pradhan NMB, Liu J. Coexistence between wildlife and humans at fine spatial scales. Proc Natl Acad Sci U S A. 2012;38:15360–15365.

31. Gopalaswamy AM, Karanth KU, Kumar NS, Macdonald DW. Estimating tropical forest ungulate densities from sign surveys using abundance models of occupancy. Anim Conserv. 2012;15:669–679.

32. Gompper ME, Kays RW, Ray JC, Lapoint SD, Bogan DA, Cryan JR. A comparison of noninvasive techniques to survey carnivore communities in northeastern North America. Wildl Soc Bull. 2006;34(4):1142–1151.

33. Nchanji AC, Plumptre AJ. Seasonality in elephant dung decay and implications for censusing and population monitoring in south-western Cameroon. Afr J Ecol. 2001;39:24–32.

34. Laing SE, Buckland ST, Burn RW, Lambie D. Amphlett A. Dung and nest surveys: estimating decay rates. J Appl Ecol. 2003;40:1102–1111.

35. Ramsey DSL, Barclay C, Campbell CD, et al. Detecting rare carnivores using scats: Implications for monitoring a fox incursion into Tasmania. Ecol Evol. 2018;8:732–743. doi: 10.1002/ece3.3694 29321909

36. Carreras-Duro J, Moleón M, Barea-Azeón JM, Ballesteros-Duperón E, Virgós E. Optimization of sampling effort in carnivore surveys based on signs: A regional-scale study in a Mediterranean area. Mamm Biol. 2016;81: 205–213.

37. Brassine E, Parker D. Trapping elusive cats: using intensive camera trapping to estimate the density of a rare African felid. PloS one, 2015. doi: 10.1371/journal.pone.0142508 26698574

38. Alexander JS, Gopalaswamy AM, Shi K, Riordan P. Face value: towards robust estimates of snow leopard densities. PLoS One, 2015. doi: 10.1371/journal.pone.0134815 26322682

39. Munari DP, Keller C, Venticinque EM. An evaluation of field techniques for monitoring terrestrial mammal populations in Amazonia. Mamm Biol. 2011;76:401–408.

40. Silveira L, Jácomo ATA, Diniz-Filho JAF. Camera trap, line transect census and track surveys: a comparative evaluation. Biol Conserv. 2003;114:351–355.

41. Mendoza E, Martineau PR, Brenner E, Dirzo R. A novel method to improve individual animal identification based on camera-trapping data. J Wildl Manage. 2011;75: 973–979. doi: 10.1002/jwmg.120

42. Balme GA, Hunter LTB, Slotow R. Evaluating methods for counting cryptic carnivores. J Wildl Manage. 2007;73: 433–441.

43. Wallace RB, Gomez H, Ayala G, Espinoza F. Camera trapping for jaguar (Panthera onca) in the Tuichi Valley, Bolivia. J Neotrop Mammal. 2003;10:133–139.

44. Karanth KU, Nichols JD, Kumar NS, Link WA, Hines JE. Tigers and their prey: Predicting carnivore densities from prey abundance. Proc Natl Acad Sci U S A. 2004;101:4854–4858. doi: 10.1073/pnas.0306210101 15041746

45. Trolle M, Noss AJ, De E, Lima S, Dalponte JC. Camera- trap studies of maned wolf density in the Cerrado and the Pantanal of Brazil. Biodivers Conserv. 2007;16:1197–1204.

46. Rowcliffe JM, Field J, Turvey ST, Carbone C. Estimating animal density using camera traps without the need for individual recognition. J Appl Ecol. 2008;45:1228–1236.

47. Apps P, McNutt JW. Are camera traps fit for purpose? A rigorous, reproducible and realistic test of camera trap performance. African Journal of Ecology [Internet]. 2018;56(4):710–20. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/aje.12573

48. Silvy NJ. The Wildlife Techniques Manual. 7th edition. Baltimore, MD: The Johns Hopkins University Press; 2012.

49. Smallwood KS, Fitzhugh EL. Track count for estimating mountain lion Felis concolor californica population trend: Biol Conserv. 1995;71:251–259.

50. Voss RS, Emmons LH. Mammalian diversity in neotropical lowland rainforest: a preliminary assessment. Bull Am Mus Nat Hist. 1996;230: 1–115.

51. Gaidet-Drapier N, Fritz H, Bougarel M, Renaud PC, Poilecot P, Chardonnet P et al Cost and efficiency of large mammal census techniques: comparison of methods for a participatory approach in a communal area, Zimbabwe. Biol Conserv. 2006;15:735–754.

52. Barea-Azeón JM, Virgós E, Ballesteros-Duperón E, Moleón M, Chirosa M Surveying carnivores at large spatial scales: a comparison of four broad-applied methods. Biodivers Conserv. 2007;16: 1213–1230. doi: 10.1007/s10531006-9114-x

53. Cummings AR, Read J, Fragoso JMV. Utilizing Amerindian hunters’ descriptions to guide the production of a vegetation map. Int J of Appl Geosp Research. 2015;6:121–145.

54. Bovolo CI, Pereira R, Parkin G, Kilsby C, Wagner T. Fine-scale regional climate patterns in the Guianas, tropical South America, based on observations and reanalysis data. Int J Climatol. 2012;32: 1665–1689. doi: 10.1002/joc.2387

55. Laake JL, Burnham KP, Anderson DR. User’s Manual for Program TRANSECT. Logan, UT: Utah State University Press; 1979.

56. Wilson DE, Reeder DM. 2005. Mammal species of the world. A taxonomic and geographic reference. Johns Hopkins University Press, Baltimore, USA.

57. Johnson CJ, Seip DR, Boyce MS. A quantitative approach to conservation planning: using resource selection functions to map the distribution of mountain caribou at multiple spatial scales. J Appl Ecol. 2004;41:238–251.

58. Ball IR, Possingham HP, Watts ME. Marxan & relatives: Software for spatial conservation prioritization. In: Moilanen A, Wilson KA, Possingham HP, editors. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools. Oxford: Oxford University Press; 2009. pp. 185–195.

59. Espartosa KD, Pinotti BT, Pardini R. Performance of camera trapping and track counts for surveying large mammals in rainforest remnants. Biodiver Conserv. 2011;20: 2815.

60. Julien-Laferriere D. Radio-tracking observations on ranging and foraging patterns by kinkajous (Potos flavus) in French Guiana. J Trop Ecol. 1993;9: 19–32. doi: 10.1017/S0266467400006908

61. Dobbins MT, Steinberg MK, Broadbent EN, Ryan SJ. Habitat use, activity patterns and human interactions with jaguars Panthera onca in southern Belize. Oryx. 2018; 52(2): 276–281.

62. Chao A, Colwell RK, Lin CW, Gotelli NJ. Sufficient sampling for asymptotic minimum species richness estimators. Ecology. 2009;90:1125–1133. doi: 10.1890/07-2147.1 19449706

63. Steenweg R, Hebblewhite M, Whittington J, Lukacs P, McKelvey K. Sampling scales define occupancy and underlying occupancy–abundance relationships in animals. Ecology. 2018;99: 172–183. doi: 10.1002/ecy.2054 29065232

64. Hill K, Padwe J, Bejyvagi C, Bepurangi A, Jakugi F, Tykuarangi R. et al. Impact of hunting on large vertebrates in the Mbaracayu Reserve, Paraguay. Conserv Biol. 1997;11: 1339–1353. doi: 10.1046/j.1523-1739.1997.96048.x

65. Carrillo E, Wong G, Cuaróns A.D. Monitoring mammal population in Costa Rican protected areas under different hunting restrictions. Conserv Biol. 2000;14:1580–1591.

66. Galetti M, Eizirik E, Beisiegel B, Ferraz K, Cavalcanti S, Srbek-Araujo AC, Crawshaw P, Paviolo A, Galetti PM, Marinho-Filho J, Vercillo U, Morato R. Atlantic Rainforest's jaguars in decline. Science. 2013;342:930.

67. Pfeifer M, Lefebvre V, Peres CA, Banks-Leite C, Wearn OR, Marsh C. J. et al. Creation of forest edges has a global impact on forest vertebrates. Nature. 2017;551:187–191. doi: 10.1038/nature24457 29088701

68. Tucker MA, Böhning-Gaese K, Fagan WF, Fryxell JM, Van Moorter B, Alberts SC, et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science. 2018;26:359–466.

69. Keeping D. Rapid assessment of wildlife abundance: estimating animal density with track counts using body mass–day range scaling rules. Anim Cons. 2014;17:486–497.

70. Keeping D., & Pelletier R. Animal density and track counts: understanding the nature of observations based on animal movements. PLoS one, 2014. e96598/journal.pone.0096598.

71. Eisenberg JF, Redford KH. Mammals of the Neotropics, volume 3: The central Neotropics: Ecuador, Peru, Bolivia, Brazil. Chicago, IL.: University of Chicago Press; 1989.

72. Roopsind A, Caughlin TT, Hout P, Arets E, Putz FE. Trade‐offs between carbon stocks and timber recovery in tropical forests are mediated by logging intensity. Glob Change Biol. 2018;24: 2862–2874. doi: 10.1111/gcb.14155 29603495

73. Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, et al. Status and ecological effects of the world’s largest carnivores. Science. 2014;343(6167): 124148


Článek vyšel v časopise

PLOS One


2019 Číslo 10