Robust, real-time generic detector based on a multi-feature probabilistic method

Autoři: Matthieu Doyen aff001;  Di Ge aff001;  Alain Beuchée aff001;  Guy Carrault aff001;  Alfredo I. Hernández aff001
Působiště autorů: Univ Rennes, CHU Rennes, Inserm, LTSI - UMR 1099, F-35000 Rennes, France aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223785


Robust, real-time event detection from physiological signals acquired during long-term ambulatory monitoring still represents a major challenge for highly-artifacted signals. In this paper, we propose an original and generic multi-feature probabilistic detector (MFPD) and apply it to real-time QRS complex detection under noisy conditions. The MFPD method calculates a binary Bayesian probability for each derived feature and makes a centralized fusion, using the Kullback-Leibler divergence. The method is evaluated on two ECG databases: 1) the MIT-BIH arrhythmia database from Physionet containing clean ECG signals, 2) a benchmark noisy database created by adding noise recordings of the MIT-BIH noise stress test database, also from Physionet, to the MIT-BIH arrhythmia database. Results are compared with a well-known wavelet-based detector, and two recently published detectors: one based on spatiotemporal characteristic of the QRS complex and the second, as the MFDP, based on feature calculations from the University of New South Wales detector (UNSW). For both benchmark Physionet databases, the proposed MFPD method achieves the lowest standard deviation in sensitivity and positive predictivity (+P) despite its online algorithm architecture. While the statistics are comparable for low-to mildly artifactual ECG signals, the MFPD outperforms reference methods for artifacted ECG with low SNR levels reaching 87.48 ± 14.21% in sensitivity and 89.39 ± 14.67% in +P as compared to 88.30 ± 17.66% and 86.06 ± 19.67% respectively from UNSW, the best performing reference method. With demonstrations on the extensively studied QRS detection problem, we consider that the proposed generic structure of the multi-feature probabilistic detector should offer promising perspectives for long-term monitoring applications for highly-artifacted signals.

Klíčová slova:

Arrhythmia – Database and informatics methods – Electrocardiography – Probability density – Signal filtering – Stress signaling cascade – Jitter – Bandpass filters


1. Pan J, Tompkins WJ. A Real-Time QRS Detection Algorithm. IEEE Transactions on Biomedical Engineering. 1985;BME-32(3):230–236. doi: 10.1109/TBME.1985.325532

2. Hernández AI, Carrault G, Mora F, Thoraval L, Passariello G, Schleich JM. Multisensor fusion for atrial and ventricular activity detection in coronary care monitoring. IEEE transactions on bio-medical engineering. 1999;46(10):1186–1190. doi: 10.1109/10.790494 10513122

3. Hansen B. Robust Detection of Heart Beats in Multimodal Data: the PhysioNet/ CINC 2014. 2014.

4. Kohler B, Hennig C, Orglmeister R. The principles of software QRS detection. IEEE Engineering in Medicine and Biology Magazine. 2002;21(1):42–57. doi: 10.1109/51.993193 11935987

5. Jain S, Ahirwal MK, Kumar A, Bajaj V, Singh GK. QRS detection using adaptive filters: A comparative study. ISA Transactions. 2017;66:362—375. doi: 10.1016/j.isatra.2016.09.023 27745689

6. Osowski S, Tran L. ECG Beat Recognition Using Fuzzy Hybrid Neural Network. vol. 48; 2001.

7. Zidelmal Z, Amirou A, Ould-Abdeslam D, Moukadem A, Dieterlen A. QRS detection using S-Transform and Shannon energy. Computer Methods and Programs in Biomedicine. 2014;116(1):1—9. doi: 10.1016/j.cmpb.2014.04.008 24856322

8. Li C, Zheng C, Tai C. Detection of ECG characteristic points using wavelet transform. vol. 42; 1995.

9. Benitez D, Gaydecki PA, Zaidi A, Fitzpatrick AP. The use of the Hilbert transform in ECG signal analysis. Computers in Biology and Medicine. 2001;31(5):399—406. doi: 10.1016/s0010-4825(01)00009-9 11535204

10. Zidelmal Z, Amirou A, Adnane M, Belouchrani A. QRS detection based on wavelet coefficients. Computer Methods and Programs in Biomedicine. 2012;107(3):490—496. doi: 10.1016/j.cmpb.2011.12.004 22296976

11. Rani R, VS C, HP S. Automated Detection of QRS Complex in ECG Signal using Wavelet Transform. International Journal of Computer Science and Network. 2015;15.

12. Peltola MA. Role of editing of R-R intervals in the analysis of heart rate variability. Frontiers in physiology. 2012;3:148–148. doi: 10.3389/fphys.2012.00148 22654764

13. Friesen GM, Jannett TC, Jadallah MA, Yates SL, Quint SR, Nagle HT. A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Transactions on Biomedical Engineering. 1990;37(1):85–98. doi: 10.1109/10.43620 2303275

14. Elgendi M, Eskofier B, Dokos S, Abbott D. Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems. PloS one. 2014;9(1):e84018–e84018. doi: 10.1371/journal.pone.0084018 24409290

15. Khamis H, Weiss R, Xie Y, Chang CW, Lovell NH, Redmond SJ. QRS Detection Algorithm for Telehealth Electrocardiogram Recordings. IEEE Transactions on Biomedical Engineering. 2016;63:1377–1388. doi: 10.1109/TBME.2016.2549060 27046889

16. Elgendi M, Mohamed A, Ward RK. Efficient ECG Compression and QRS Detection for E-Health Applications. In: Scientific Reports; 2017. doi: 10.1038/s41598-017-17101-x

17. Kim J, Shin H. Simple and Robust Realtime QRS Detection Algorithm Based on Spatiotemporal Characteristic of the QRS Complex. PloS one. 2016;11 3:e0150144. doi: 10.1371/journal.pone.0150144 26943949

18. Baig MM, Gholamhosseini H, Connolly MJ. A comprehensive survey of wearable and wireless ECG monitoring systems for older adults. Medical & Biological Engineering & Computing. 2013;51(5):485–495. doi: 10.1007/s11517-012-1021-6

19. Deepu CJ, Xu X, Zou X, Yao L, Lian Y. An ECG-on-Chip for Wearable Cardiac Monitoring Devices. In: 2010 Fifth IEEE International Symposium on Electronic Design, Test Applications; 2010. p. 225–228.

20. Goldenholz DM, Kuhn A, Austermuehle A, Bachler M, Mayer CC, Wassertheurer S, et al. Long-term monitoring of cardiorespiratory patterns in drug-resistant epilepsy. Epilepsia. 2017;58 1:77–84. doi: 10.1111/epi.13606 27864903

21. Portet F, Hernandez A, Carrault G. G.: Evaluation of real-time QRS detection algorithms in variable contexts. Medical & biological engineering & computing. 2005;43:379–85. doi: 10.1007/BF02345816

22. Dumont J, Hernandez A, Carrault G. Improving ECG Beats Delineation With an Evolutionary Optimization Process. Biomedical Engineering, IEEE Transactions on. 2010;57:607—615. doi: 10.1109/TBME.2008.2002157

23. Altuve M, Carrault G, Cruz J, Beuchae A, Pladys P, Hernandez A. Analysis of the QRS Complex for Apnea-Bradycardia Characterization in Preterm Infants. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference. 2009;2009:946–9.

24. Hernando D, Bailón R, Almeida R, Hernández AI. QRS detection optimization in stress test recordings using evolutionary algorithms. Computing in Cardiology 2014. 2014; p. 737–740.

25. Moody GB, Muldrow WK, Mark RG. NOISE STRESS TEST FOR ARRHYTHMIA DETECTORS. Computers in Cardiology. 1984;11:381–384.

26. Hamilton PS, Tompkins WJ. Quantitative investigation of QRS detection rules using MIT/BIH Arrhythmia database. Biomedical Engineering, IEEE Transactions on. 1987;33:1157—1165.

27. Gil M, Alajaji F, Linder T. Rényi divergence measures for commonly used univariate continuous distributions. Information Sciences. 2013;249:124–131. doi: 10.1016/j.ins.2013.06.018

28. Mathiassen JR, Skavhaug A, Bø K. Texture Similarity Measure Using Kullback-Leibler Divergence between Gamma Distributions. In: Heyden A, Sparr G, Nielsen M, Johansen P, editors. Computer Vision—ECCV 2002. Springer Berlin Heidelberg; 2002. p. 133–147.

29. Elgendi M. Fast QRS Detection with an Optimized Knowledge-Based Method: Evaluation on 11 Standard ECG Databases. PLOS ONE. 2013;8(9):1–18. doi: 10.1371/journal.pone.0073557

30. Kim J, Shin H. Simple and Robust Realtime QRS Detection Algorithm Based on Spatiotemporal Characteristic of the QRS Complex. PLOS ONE. 2016;11(3):1–13.

31. Martínez JP, Almeida R, Olmos S, Rocha AP, Laguna P. A Wavelet-Based ECG Delineator: Evaluation on Standard Databases. IEEE transactions on bio-medical engineering. 2004;51:570–81. doi: 10.1109/TBME.2003.821031 15072211

32. Llamedo M. ecg-kit a Matlab Toolbox for Cardiovascular Signal Processing. Journal of Open Research Software. 2016;4:e8. doi: 10.5334/jors.86

33. Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov P, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation. 2000;101:E215–20. doi: 10.1161/01.cir.101.23.e215 10851218

34. Liu F, Liu C, Zhao L, Jiang X, Zhang Z, Li J, et al. Dynamic ECG Signal Quality Evaluation Based on the Generalized bSQI Index. IEEE Access. 2018;6:41892–41902. doi: 10.1109/ACCESS.2018.2860056

35. Hansen B. (2004, May). University of Wisconsin. Madison, US. Bandwidth selection for nonparametric distribution estimation [Online]. Available:

36. Do M, Vetterli M. Wavelet-based Texture Retrieval using Generalized Gaussian Density and Kullback-Leibler Distance. IEEE transactions on image processing: a publication of the IEEE Signal Processing Society. 2002;11:146–58. doi: 10.1109/83.982822

Článek vyšel v časopise


2019 Číslo 10