Skeletal development in the sea urchin relies upon protein families that contain intrinsic disorder, aggregation-prone, and conserved globular interactive domains

Autoři: Martin Pendola aff001;  Gaurav Jain aff001;  John Spencer Evans aff001
Působiště autorů: Laboratory for Chemical Physics, Center for Skeletal and Craniofacial Biology, New York University, New York, New York, United States of America aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article


The formation of the sea urchin spicule skeleton requires the participation of hydrogel-forming protein families that regulate mineral nucleation and nanoparticle assembly processes that give rise to the spicule. However, the structure and molecular behavior of these proteins is not well established, and thus our ability to understand this process is hampered. We embarked on a study of sea urchin spicule proteins using a combination of biophysical and bioinformatics techniques. Our biophysical findings indicate that recombinant variants of the two most studied spicule matrix proteins, SpSM50 and SpSM30B/C (S. purpuratus) have a conformational landscape that include a C-terminal random coil/intrinsically disordered MAPQG sequence coupled to a conserved, folded N-terminal C-type lectin-like (CTLL) domain, with SpSM50 > SpSM30B/C with regard to intrinsic disorder. Both proteins possess solvent-accessible unfolded MAQPG sequence regions where Asn, Gln, and Arg residues may be accessible for protein hydrogel interactions with water molecules. Our bioinformatics study included seven other spicule matrix proteins where we note similarities between these proteins and rare, unusual proteins that possess folded and unfolded traits. Moreover, spicule matrix proteins possess three types of sequences: intrinsically disordered, amyloid-like, and folded protein-protein interactive. Collectively these reactive domains would be capable of driving protein assembly and hydrogel formation. Interestingly, three types of global conformations are predicted for the nine member protein set, wherein we note variations in the arrangement of intrinsically disordered and interactive globular domains. These variations may reflect species-specific requirements for spiculogenesis. We conclude that the molecular landscape of spicule matrix protein families enables them to function as hydrogelators, nucleators, and assemblers of mineral nanoparticles.

Klíčová slova:

Extracellular matrix proteins – Gels – Globular proteins – NMR spectroscopy – Protein domains – Sequence motif analysis – Sea urchins – Intrinsically disordered proteins


1. Evans JS The biomineralization proteome: Protein complexity for a complex bioceramic assembly process. Proteomics 2019; 19: 1–12.

2. Lowenstam HA, Weiner S, On Biomineralization. Oxford University Press, New York, NY, USA 1989, pp 1–134, ISBN 0-19-504977-2.

3. Mann S, Biomineralization. Principles and Concepts in Bioinorganic Materials Chemistry. Oxford University Press, New York, NY, USA, 2001, pp. 6–9, 24–108.

4. Seto J, Ma Y, Davis SA, Meldrum F, Schilde U, Gourrier A, et al., Structure-property relationships of a biological mesocrystal in the adult sea urchin spine. Proc. Natl. Acad. Sci USA 2012; 109:3699–3704. doi: 10.1073/pnas.1109243109 22343283

5. Berman A, Addadi L, Kvick A, Leiserowitz L, Nelson M, Weiner S, Intercalation of sea urchin proteins in calcite: Study of a crystalline composite material. Science 1990; 250: 664–667. doi: 10.1126/science.250.4981.664 17810868

6. Aizenberg J, Hanson J, Koetzle TF, Weiner S, Addadi L, Control of macromolecular distribution within synthetic and biogenic single calcite crystals. J. Am. Chem. Soc. 1997; 119:881–886.

7. Livingston BT, Killian CE, Wilt F, Cameron A, Landrum MJ, Ermolaeva O et al., Genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. Devel. Biol. 2006; 300: 335–348.

8. Wilt F, Croker L, Killian CE, McDonald K, The role of LSM34/SpSM50 in endoskeletal spicule formation in sea urchin embryos. Invert. Biol. 2008; 127:452–459.

9. Cameron RA, Samanta M, Yuan A, He D, Davidson E, SpBase: the sea urchin genome database and web site. Nucleic Acids Research. 2009;

10. Sea urchin genome sequencing consortium et al., The genome of the sea urchin Strongylocentrotus purpuratus. Science 2006; 314:941–952. doi: 10.1126/science.1133609 17095691

11. Mann K, Poustka AJ, Mann M, The sea urchin (Strongylocentrotus purpuratus) test and spine proteomes. Proteome Science 2008; 6:1–13.

12. Mann K, Wilt FH, Poustka AJ, Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix. Proteome Science 2010; 8:1–14.

13. Jain G, Pendola M, Rao A, Cölfen H, Evans JS, A model sea urchin spicule matrix protein self-associates to form mineral-modifying protein hydrogels. Biochemistry 2006; 55: 4410–4421.

14. Jain G, Pendola M, Huang YC, Gebauer D, Evans JS, A model sea urchin spicule matrix protein, rSpSM50, is a hydrogelator that modifies and organizes the mineralization process. Biochemistry 2017; 56:2663–2675. doi: 10.1021/acs.biochem.7b00083 28478667

15. Pendola M, Jain G, Huang YC, Gebauer D, Evans JS, Secrets of the sea urchin spicule revealed: Protein cooperativity is responsible for ACC transformation, intracrystalline incorporation, and guided mineral particle assembly in biocomposite material formation. ACS Omega 2018; 3:11823–11830. doi: 10.1021/acsomega.8b01697 30320276

16. Jain G, Pendola M, Koutsoumpeli E, Johnson S, Evans JS, Glycosylation fosters interactions between model sea urchin spicule matrix proteins. Implications for embryonic spiculogenesis and biomineralization. Biochemistry 2018; 57:3032–3035. doi: 10.1021/acs.biochem.8b00207 29757633

17. Pendola M, Davidyants A, Jung YS, Evans JS Sea urchin spicule matrix proteins form mesoscale hydrogels that exhibit selective ion interactions. ACS Omega 2017; 2:6151–6158. doi: 10.1021/acsomega.7b00719 31457861

18. Zhang B, Xu G, Evans JS Model peptide studies of sequence repeats derived from the intracrystalline biomineralization protein, SM50. II. Pro, Asn-rich tandem repeats. Biopolymers 2000; 54:464–475. doi: 10.1002/1097-0282(200011)54:6<464::AID-BIP90>3.0.CO;2-N 10951331

19. Xu G, Evans JS Model peptide studies of sequence repeats derived from the intracrystalline biomineralization protein, SM50. I. GVGGR and GMGGQ repeats. Biopolymers 1999; 49:303–312. doi: 10.1002/(SICI)1097-0282(19990405)49:4<303::AID-BIP5>3.0.CO;2-4 10079769

20. Wustman B, Santos R, Zhang B, and Evans JS Identification of a “glycine loop”-like coiled structure in the 34-AA Pro, Gly, Met repeat domain of the biomineral-associated protein, PM27. Biopolymers 2002; 65:1305–1318.

21. Elsharkawy S, Al-Jawad M, Pantano MF, Tejeda-Montes E, Mehta K, Jamal H, et al., A Protein disorder-order interplay to guide the growth of hierarchical mineralized structures. Nature Commun. 2018;

22. Evans JS Identification of intrinsically disordered and aggregation—promoting sequences within the aragonite-associated nacre proteome. Bioinformatics 2012; 28:3182–3185.

23. van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker, et al., Classification of intrinsically disordered regions and proteins. Chem. Rev. 2014; 114: 6589–6631. doi: 10.1021/cr400525m 24773235

24. Uversky VN, Dunker AK Multiparametric analysis of intrinsically disordered proteins: Looking at intrinsic disorder through compound eyes. Anal. Chem. 2011; 84:2096–2104.

25. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT, Prediction and functional analysis of native disorder in proteins from the three kingdoms of life J. Mol. Biol. 2004; 337:635–645.

26. Dosztanyi Z, IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 2005; 21(16):3433–3434. doi: 10.1093/bioinformatics/bti541 15955779

27. Linding R, Russell RB, Neduva V, Gibson TJ, GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res. 2003; 31:3701–3708. doi: 10.1093/nar/gkg519 12824398

28. Smithers B, Oates ME, Tompa P, Gough J, Three reasons protein disorder analysis makes more sense in the light of collagen. Protein Sci 2016; 25:1030–1036. doi: 10.1002/pro.2913 26941008

29. Peysselon F, Xue B, Uversky VN, Ricard-Blum S, Intrinsic disorder of the extracellular matrix. Mol. BioSys. 2011; 7:3353–3356.

30. Garbuzynsky SO, Lobanov MY, Galzitskaya OV, FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics 2010; 26:326–332. doi: 10.1093/bioinformatics/btp691 20019059

31. Conchillo-Solé O, de Groot NS, Avilés FX, Daura JX, Ventura S, AGGRESCAN: a server for the prediction and evaluation of "hotspots" of aggregation in polypeptides. BMC Bioinformatics 2007; 8:1–17.

32. Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, Eisenberg D, The 3D profile method for identifying fibril-forming segments of proteins. Proc. Natl. Acad. Sci. USA 2006; 103:4074–4078. doi: 10.1073/pnas.0511295103 16537487

33. Harakey MA, Klueg K, Sheppard P, Raff RA, Structure, expression, and extracellular targeting of PM27, a skeletal protein associated specifically with growth of the sea urchin larval spicule. Devel. Biol 1995; 168:549–566.

34. Urry LA, Hamilton PC, Killian CE, Wilt FH, (2000) Expression of spicule matrix proteins in the sea urchin embryo during normal and experimentally altered spiculogenesis. Devel. Biol. 2000; 225:201–213.

35. Peled-Kamar M, Hamilton P, Wilt FH, Spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule. Expt. Cell Res. 2002; 272:56–61.

36. Katoh-Fukui Y, Noce T, Ueda T, Fujiwara Y, Hasimoto N, Tanaka S, et al., Isolation and characterization of cDNA encoding a spicule matrix protein in Hemicentrotus pulkcherrimus. Int. J. Dev. Biol. 1992; 36:353–361. 1445780

37. McGuffin LJ, Atkins J, Salehe BR, Shuid AN, Roche DB, IntFOLD: an integrated server for modelling protein structures and functions from amino acid sequences. Nucleic Acids Research 2015; 43:W169–73. doi: 10.1093/nar/gkv236 25820431

38. McGuffin LJ, Shuid AM, Kempster R, Maghrabi AHA, Nealon JO, Salehe BR, et al., Accurate Template Based Modelling in CASP12 using the IntFOLD4-TS, ModFOLD6 and ReFOLD methods. Proteins: Structure, Function, and Bioinformatics 2017; 86 Suppl 1: 335–344.

39. Chang EP, Evans JS, Pif97, a von Willebrand and Peritrophin biomineralization protein, organizes mineral nanoparticles and creates intracrystalline nanochambers. Biochemistry 2015; 54: 5348–5355. doi: 10.1021/acs.biochem.5b00842 26258941

40. Perovic I, Chang EP, Verch A, Rao A, Cölfen H, Kroeger R, et al., An oligomeric C-RING nacre protein influences pre-nucleation events and organizes mineral nanoparticles. Biochemistry 2014; 53:7259–7268. doi: 10.1021/bi5008854 25355304

41. Perovic I, Chang EP, Lui M, Rao A, Colfen H, Evans JS, A nacre protein, n16.3, self-assembles to form protein oligomers that dimensionally limit and organize mineral deposits. Biochemistry 2014; 53:3669–3677.

42. Petersen TN, Brunak S, von Heijne G, Nielsen H, SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods 2011; 8:785–786. doi: 10.1038/nmeth.1701 21959131

43. Kyte J, Doolittle RF A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982; 157, 105–132. doi: 10.1016/0022-2836(82)90515-0 7108955

44. Xue B, Oldfield CJ, Dunker AK, Uversky VN, CDF it all: Consensus prediction of intrinsically disordered proteins based on various cumulative distribution functions. FEBS Lett. 2009; 583, 1469–1474. doi: 10.1016/j.febslet.2009.03.070 19351533

45. Huang F, Oldfield C, Meng J, Hsu WL, Xue B, Uversky VN, Romero P, Dunker AK. Subclassifying disordered proteins by the CH-CDF plot method. Pac. Symp. Biocomput. 2012; 128–139. 22174269

46. Wallace AF, Hedges LO, Fernandez-Martinez A, Raiteri P, Gale JD, Waychunas GA, et al., Liquid-liquid separation in supersaturated calcium carbonate solutions. Science 2013; 341:885–889.

47. Gebauer D, Volkel A, Cölfen H, Stable prenucleation of calcium carbonate clusters. Science 2008; 322: 1819–1822. doi: 10.1126/science.1164271 19095936

48. Gebauer D, Cölfen H, Prenucleation clusters and non-classical nucleation. Nano Today 2011; 6:564–584.

49. Olson IC, Kozdon R, Valley JW, Gilbert PUPA, (2012) Mollusk shell nacre ultrastructure correlates with environmental temperature and pressure. J. Am. Chem. Soc. 2012; 134:7351–7358. doi: 10.1021/ja210808s 22313180

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden