Proteomic changes of aryl hydrocarbon receptor (AhR)-silenced porcine granulosa cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)


Autoři: Karina Orlowska aff001;  Sylwia Swigonska aff002;  Agnieszka Sadowska aff001;  Monika Ruszkowska aff001;  Anna Nynca aff002;  Tomasz Molcan aff001;  Agata Zmijewska aff001;  Renata E. Ciereszko aff001
Působiště autorů: Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego, Olsztyn, Poland aff001;  Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Prawochenskiego, Olsztyn, Poland aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223420

Souhrn

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a toxic man-made chemical compound contaminating the environment and affecting human/animal health and reproduction. Intracellular TCDD action usually involves the activation of aryl hydrocarbon receptor (AhR). The aim of the current study was to examine TCDD-induced changes in the proteome of AhR-silenced porcine granulosa cells. The AhR-silenced cells were treated with TCDD (100 nM) for 3, 12 or 24 h. Total protein was isolated, labeled with cyanines and next, the samples were separated by isoelectric focusing and SDS-PAGE. Proteins of interest were identified by MALDI-TOF/TOF mass spectrometry (MS) analysis and confirmed by western blotting and fluorescence immunocytochemistry. The AhR-targeted siRNA transfection reduced the granulosal expression level of AhR by 60–70%. In AhR-silenced porcine granulosa cells, TCDD influenced the abundance of only three proteins: annexin V, protein disulfide isomerase and ATP synthase subunit beta. The obtained results revealed the ability of TCDD to alter protein abundance in an AhR-independent manner. This study offers a new insight into the mechanism of TCDD action and provide directions for future functional studies focused on molecular effects exerted by TCDD.

Klíčová slova:

Apoptosis – Gene expression – Granulosa cells – Proteomes – Small interfering RNAs – Transfection – Untranslated regions – Propidium iodide staining


Zdroje

1. Larsen JC. Risk assessments of polychlorinated dibenzo- p-dioxins, polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls in food. Mol Nutr Food Res. 2006; 50: 885–896. doi: 10.1002/mnfr.200500247 17009211

2. Kulkarni PS, Crespo JG, Afonso CAM. Dioxins sources and current remediation technologies–a review. Environ Int. 2008; 34: 139–153. doi: 10.1016/j.envint.2007.07.009 17826831

3. Milbrath MO, Wenger Y, Chang CW, Emond C, Garabrant D, Gillespie BWet al. Apparent half-lives of dioxins, furans, and polychlorinated biphenyls as a function of age, body fat, smoking status, and breast-feeding. Environ Health Perspect. 2009; 117(3): 417–425. doi: 10.1289/ehp.11781 19337517

4. Beischlag TV, Morales JL, Brett D, Hollingshead BD, Perdew GH. The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene. 2008; 18(3): 207–250.

5. Denison MS, Soshilov AA, He G, DeGroot DE, Zhao B. Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci. 2011; 124(1): 1–22. doi: 10.1093/toxsci/kfr218 21908767

6. Mulero-Navarro S and Fernandez-Salguero P.M. New Trends in Aryl Hydrocarbon Receptor Biology. Front Cell Dev Biol. 2016; 11 (4): 45.

7. Wang Y M, Ong S S, Chai S C, Chen T. Role of CAR and PXR in xenobiotic sensing and metabolism. Expert Opin Drug Metab Toxicol. 2012; 8: 803–817. doi: 10.1517/17425255.2012.685237 22554043

8. Swedenborg E, Pongratz I. AhR and ARNT modulate ER signaling. Toxicology. 2010; 268: 132–138. doi: 10.1016/j.tox.2009.09.007 19778576

9. Ghotbaddini M and Powell JB. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells. Int J Environ Res Public Health. 2015; 12(7): 7506–7518. doi: 10.3390/ijerph120707506 26154658

10. Verma G, Khan MF, Shaquiquzzaman M. Akhtar W, Akhter M, Hasan SMet al. Molecular interactions of dioxins and DLCs with the xenosensors (PXR and CAR): An in silico risk assessment approach. J Mol Recognit. 2017; 30 (12).

11. Khan MF, Alam MM, Verma G, Akhtar W, Rizvi MA, Ali A et al. Molecular Interactions of Dioxins and DLCs with the Ketosteroid Receptors: An in silico Risk Assessment Approach. Toxicol Mech Methods. 2017; 27(2): 151–163. doi: 10.1080/15376516.2016.1273423 27997270

12. Matsumura F. Nongenomic Route of Action of TCDD: Identity, Characteristics, and Toxicological Significance in The AH Receptor in Biology and Toxicology (ed. Pohjanvirta R.) 197–215 (John Wiley & Sons, 2012).

13. Lucie Larigot L, Juricek L, Dairou J, Coumoul X. AhR signaling pathways and regulatory functions. Biochim Open. 2018; 7: 1–9. doi: 10.1016/j.biopen.2018.05.001 30003042

14. Pieklo R, Grochowalski A, Gregoraszczuk EL. 2,3,7,8-tetrachlorodibenzo-p-dioxin alters follicular steroidogenesis in time- and cell-specific manner. Exp Clin Endocr Diab. 2000; 108: 299–304.

15. Grochowalski A, Chrzaszcz R, Pieklo R, Gregoraszczuk EL. Estrogenic and antiestrogenic effect of in vitro treatment of follicular cells with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Chemosphere. 2001; 43: 823–827. doi: 10.1016/s0045-6535(00)00440-9 11372872

16. Gregoraszczuk EL. Dioxin exposure and porcine reproductive hormonal activity. Cad Saude Publ. 2002; 18: 453–462.

17. Albertini DF, Combelles CM, Benecchi E, Carabatsos MJ. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001; 121: 647–653. 11427152

18. Jablonska O, Piasecka J, Ostrowska M, Sobocinska N, Wasowska B, Ciereszko RE. The expression of the aryl hydrocarbon receptor in reproductive and neuroendocrine tissues during the estrus cycle in the pig. Anim Reprod Sci. 2011; 126: 221–228. doi: 10.1016/j.anireprosci.2011.05.010 21715111

19. Sadowska A, Nynca A, Ruszkowska M, Paukszto L, Myszczynski K, Orlowska K, et al. Transcriptional profiling of porcine granulosa cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Chemosphere. 2017; 178: 368–377. doi: 10.1016/j.chemosphere.2017.03.055 28340459

20. Ruszkowska M, Nynca A, Paukszto L, Sadowska A, Swigonska S, Orlowska K, et al. Identification and characterization of long non-coding RNAs in porcine granulosa cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Anim Sci Biotechnol. 2018; 9: 72. doi: 10.1186/s40104-018-0288-3 30338064

21. Orlowska K, Swigonska S, Sadowska A, Ruszkowska M, Nynca A, Molcan T, et al. The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the proteome of porcine granulosa cells. Chemosphere 2018; 212: 170–181. doi: 10.1016/j.chemosphere.2018.08.046 30144678

22. Sadowska A, Nynca A, Korzeniewska M, Piasecka-Srader J, Jablonska M, Orlowska K, et al. Characterization of porcine granulosa cell line AVG-16. Folia Biol-Prague. 2015; 61: 184–194.

23. Horisberger MA. A method for prolonged survival of primary cell lines. In Vitro Cell Dev Biol Anim. 2006; 42: 143–148. doi: 10.1290/0511081.1 16848633

24. Gregoraszczuk EL, Wójtowicz AK, Zabielny E, Grochowalski A. Dose-and-time dependent effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on progesterone secretion by porcine luteal cells cultured in vitro. J Physiol Pharmacol 2000; 51: 127–135. 10768856

25. Jablonska O, Piasecka-Srader J, Nynca A, Kołomycka A, Robak A, Wąsowska B, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin alters steroid secretion but does not affect cell viability and the incidence of apoptosis in porcine luteinised granulosa cells. Acta Vet Hung. 2014; 62: 408–421. doi: 10.1556/AVet.2014.015 25038954

26. Sweeney MH, Mocarelli P. Human health effects after exposure to 2,3,7,8-TCDD. Food Addit Contam. 2000; 17(4): 303–316. doi: 10.1080/026520300283379 10912244

27. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007; 8(2): R19. doi: 10.1186/gb-2007-8-2-r19 17291332

28. Ramagli L, Rodriguez L. Quantitation of microgram amounts of protein in two-dimensional polyacrylamide gel electrophoresis sample buffer. Electrophoresis. 1985; 6: 559–563.

29. Tijet N, Boutros PC, Moffat ID, Okey AB, Tuomisto J, Pohjanvirta R. Aryl hydrocarbon receptor regulates distinct dioxin-dependent and dioxin-independent gene batteries. Mol Pharmacol. 2006; 69: 140–153. doi: 10.1124/mol.105.018705 16214954

30. Boutros PC, Bielefeld KA, Pohjanvirta R, Harper PA. Dioxin-dependent and dioxin-independent gene batteries: comparison of liver and kidney in AHR-null mice. Toxicol Sci. 2009; 112: 245–256. doi: 10.1093/toxsci/kfp191 19759094

31. Yoshimori T, Semba T, Takemoto H, Akagi S, Yamamoto A, Tashiro Y. Protein disulfide-isomerase in rat exocrine pancreatic cells is exported from the endoplasmic reticulum despite possessing the retention signal. J Biol Chem. 1990; 265: 15984–15990. 2394756

32. Ali Khan H, Mutus B. Protein disulfide isomerase a multifunctional protein with multiple physiological roles. Front Chem. 2014; 2: 70. doi: 10.3389/fchem.2014.00070 25207270

33. Macer DR, Koch GL. Identification of a set of calcium-binding proteins in reticuloplasm, the luminal content of the endoplasmic reticulum. J Cell Sci. 1988; 91: 61–70. 3253304

34. Lebeche D, Lucero HA, Kaminer B. Calcium binding properties of rabbit liver protein disulfide isomerase. Biochem Biophys Res Commun. 1994; 202: 556–561. doi: 10.1006/bbrc.1994.1964 8037762

35. Coe H, Michalak M. Calcium binding chaperones of the endoplasmic reticulum. Gen Physiol Biophys. 2009; 28: 96–103.

36. Puga A, Hoffer A, Zhou S, Bohm JM, Leikauf GD, Shertzer HG. Sustained increase in intracellular free calcium and activation of cyclooxygenase-2 expression in mouse hepatoma cells treated with dioxin. Biochem Pharmacol. 1997; 54: 1287–1296. doi: 10.1016/s0006-2952(97)00417-6 9393671

37. Mayati A, Le Ferrec E, Lagadic-Gossmann D, Fardel O. Aryl hydrocarbon receptor-independent up regulation of intracellular calcium concentration by environmental polycyclic aromatic hydrocarbons in human endothelial HMEC-1 cells. Environ Toxicol. 2012; 27: 556–562. doi: 10.1002/tox.20675 21452393

38. Shertzer HG, Genter MB, Shen D, Nebert DW, Chen Y, Dalton TP. TCDD decreases ATP levels and increases reactive oxygen production through changes in mitochondrial F(0)F(1)-ATP synthase and ubiquinone. Toxicol Appl Pharmacol. 2006; 217: 363–374. doi: 10.1016/j.taap.2006.09.014 17109908

39. Chen SC, Liao TL, Wei YH, Tzeng CR, Kao SH. Endocrine disruptor, dioxin (TCDD) induced mitochondrial dysfunction and apoptosis in humantrophoblast-like JAR cells. Mol Hum Reprod. 2010; 16: 361–372. doi: 10.1093/molehr/gaq004 20083559

40. Comelli M, Di Pancrazio F, Mavelli I. Apoptosis is induced by decline of mitochondrial ATP synthesis in erythroleukemia cells. Free Radic Biol Med. 2003; 34: 1190–1199. doi: 10.1016/s0891-5849(03)00107-2 12706499

41. Wolvetang EJ, Johnson KL, Krauer K, Ralph SJ, Linnane AW. Mitochondrial respiratory chain inhibitors induce apoptosis. FEBS Lett. 1994; 339: 40–44. doi: 10.1016/0014-5793(94)80380-3 8313978

42. Marton A, Mihalik R, Bratincsák A, Adleff V, Peták I, Végh M, et al. Apoptotic cell death induced by inhibitors of energy conservation—Bcl-2 inhibits apoptosis downstream of a fall of ATP level. Eur J Biochem. 1997; 250: 467–475. doi: 10.1111/j.1432-1033.1997.0467a.x 9428700

43. Terminella C, Tollefson K, Kroczynski J, Pelli J, Cutaia M. Inhibition of apoptosis in pulmonary endothelial cells by altered pH, mitochondrial function, and ATP supply. Am J Physiol Lung Cell Mol Physiol. 2002; 283: 1291–1302.

44. Onda M, Emi M, Yoshida A, Miyamoto S, Akaishi J, Asaka S, et al. Comprehensive gene expression profiling of anaplastic thyroid cancers with cDNA microarray of 25 344 genes. Endocr Relat Cancer. 2004; 11: 843–854. doi: 10.1677/erc.1.00818 15613457

45. Moss SE, Morgan RO. The annexins. Genome Biol. 2004; 5(4): 219. doi: 10.1186/gb-2004-5-4-219 15059252

46. Gerke V, Creutz CE, Moss SE. Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol. 2005; 6: 449–461. doi: 10.1038/nrm1661 15928709

47. Boersma HH, Kietselaer BL, Stolk LM, Bennaghmouch A, Hofstra L, Narula J, et al. Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med. 2005; 46: 2035–2050. 16330568

48. Monastyrskaya K, Babiychuk EB, Hostettler A, Rescher U, Draeger A. Annexins as intracellular calcium sensors. Cell Calcium. 2007; 41: 207–219. doi: 10.1016/j.ceca.2006.06.008 16914198

49. Jeong JJ, Park N, Kwon YJ, Ye DJ, Moon A, Chun YJ. Role of annexin A5 in cisplatin-induced toxicity in renal cells: molecular mechanism of apoptosis. J Biol Chem. 2014; 289: 2469–2481. doi: 10.1074/jbc.M113.450163 24318879

50. Ravassa S, García-Bolao I, Zudaire A, Macías A, Gavira JJ, Beaumont J, et al. Cardiac resynchronization therapy-induced left ventricular reverse remodelling is associated with reduced plasma annexin A5. Cardiovasc Res. 2010; 88: 304–313. doi: 10.1093/cvr/cvq183 20542876

51. Ea HK, Monceau V, Camors E, Cohen-Solal M, Charlemagne D, Lioté F. Annexin 5 overexpression increased articular chondrocyte apoptosis induced by basic calcium phosphate crystals. Ann Rheum Dis. 2008; 67: 1617–1625. doi: 10.1136/ard.2008.087718 18218665

52. Gidon-Jeangirard C, Solito E, Hofmann A, Russo-Marie F, Freyssinet JM, Martínez MC. Annexin V counteracts apoptosis while inducing Ca(2+) influx in human lymphocytic T cells. Biochem Biophys Res Commun. 1999; 265: 709–715. doi: 10.1006/bbrc.1999.1752 10600485

53. Bouter A, Gounou C, Berat R, Tan S, Gallois B, Granier T, d'Estaintot BLet al. Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair. Nat Commun. 2011; 2: 270. doi: 10.1038/ncomms1270 21468022

54. Carmeille R, Degrelle SA, Plawinski L, Bouvet F, Gounou C, Evain-Brion D, et al. Annexin-A5 promotes membrane resealing in human trophoblasts. Biochim Biophys Acta. 2015; 1853: 2033–2044. doi: 10.1016/j.bbamcr.2014.12.038 25595530

55. Piasecka-Srader J, Sadowska A, Nynca A, Orlowska K, Jablonska M, Jablonska O, et al. The combined effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and the phytoestrogen genistein on steroid hormone secretion, AhR and ERb expression and the incidence of apoptosis in granulosa cells of medium porcine follicles. J Reprod Develop 2016; 62: 103–113.


Článek vyšel v časopise

PLOS One


2019 Číslo 10

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Léčba bolesti v ordinaci praktického lékaře
nový kurz
Autoři: MUDr. PhDr. Zdeňka Nováková, Ph.D.

Revmatoidní artritida: včas a k cíli
Autoři: MUDr. Heřman Mann

Jistoty a nástrahy antikoagulační léčby aneb kardiolog - neurolog - farmakolog - nefrolog - právník diskutují
Autoři: doc. MUDr. Štěpán Havránek, Ph.D., prof. MUDr. Roman Herzig, Ph.D., doc. MUDr. Karel Urbánek, Ph.D., prim. MUDr. Jan Vachek, MUDr. et Mgr. Jolana Těšínová, Ph.D.

Léčba akutní pooperační bolesti
Autoři: doc. MUDr. Jiří Málek, CSc.

Nové antipsychotikum kariprazin v léčbě schizofrenie
Autoři: prof. MUDr. Cyril Höschl, DrSc., FRCPsych.

Všechny kurzy
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se