Insights into the behavior of six rationally designed peptides based on Escherichia coli’s OmpA at the water-dodecane interface

Autoři: Miguel Fernández-Niño aff001;  Lina Rojas aff001;  Javier Cifuentes aff002;  Rodrigo Torres aff003;  Andrea Ordoñez aff003;  Juan C. Cruz aff002;  Edgar Francisco Vargas aff004;  Diego Pradilla aff001;  Oscar Álvarez Solano aff001;  Andrés González Barrios aff001
Působiště autorů: Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia aff001;  GINIB Research Group, Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia aff002;  Grupo de Investigación en Bioquímica y Microbiología (GIBIM), School of Chemistry, Universidad Industrial de Santander, Bucaramanga, Colombia aff003;  Laboratorio de Termodinámica de Soluciones, Department of Chemistry, Universidad de los Andes, Bogotá, Colombia aff004
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article


The Escherichia coli’s membrane protein OmpA has been identified as a potential biosurfactant due to their amphiphilic nature, and their capacity to stabilize emulsions of dodecane in water. In this study, the influence of surfactant type, concentration, preservation time and droplet size on the crystallization of n-dodecane and water, in oil-in-water emulsions stabilized with six rationally designed Escherichia coli’s OmpA-based peptides was investigated. A differential scanning calorimetry (DSC) protocol was established using emulsions stabilized with Tween 20® and Tween 80®. A relationship between the surfactant concentration and the crystallization temperatures of n-dodecane and water was observed, where the crystallization temperatures seem to be dependent on the preservation time. A deconvolution analysis shows that the peak morphology possibly depends on the interactions at the interface because the enthalpic contributions of each Gaussian peak remained similar in emulsions stabilized with the same peptide. Adsorption results show that the main driver for adsorption and thus stabilization of emulsions is polar interactions (e.g. H-bonding) through the hydrophilic parts of the peptides. Those peptides with a preponderance of polar interaction groups distribution (i.e. NH2, COOH, imidazole) showed the highest interfacial activity under favorable pH conditions. This suggests that custom-made peptides whose hydrophilic/hydrophobic regions can be fine-tuned depending on the application can be easily produced with the additional advantage of their biodegradable nature.

Klíčová slova:

Adsorption – Crude oil – Emulsions – Molecular dynamics – Nucleation – Surfactants – Crystallization – Enthalpy


1. Amani H, Sarrafzadeh MH, Haghighi M, Mehrnia MR. Comparative study of biosurfactant producing bacteria in MEOR applications. J Pet Sci Eng. 2010;75: 209–214.

2. Lourith N, Kanlayavattanakul M. Natural surfactants used in cosmetics: glycolipids. Int J Cosmet Sci. 2009;31: 255–261. doi: 10.1111/j.1468-2494.2009.00493.x 19496839

3. Mulligan CN. Environmental applications for biosurfactants. Environ Pollut. 2005;133: 183–198. doi: 10.1016/j.envpol.2004.06.009 15519450

4. Nitschke M, Costa SGVAO. Biosurfactants in food industry. Trends Food Sci Technol. Elsevier; 2007;18: 252–259. doi: 10.1016/J.TIFS.2007.01.002

5. Van Hamme JD, Urban J. Biosurfactants in Bioremediation. In: Singh A, Kuhad CR, Ward PO, editors. Advances in Applied Bioremediation. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. pp. 73–89. doi: 10.1007/978-3-540-89621-0_4

6. Healy MG, Devine CM, Murphy R. Microbial production of biosurfactants. Resour Conserv Recycl. Elsevier; 1996;18: 41–57. doi: 10.1016/S0921-3449(96)01167-6

7. Segura SMA, Macías AP, Pinto DC, Vargas WL, Vives-Florez MJ, Barrera HEC, et al. Escherichia coli’s OmpA as Biosurfactant for Cosmetic Industry: Stability Analysis and Experimental Validation Based on Molecular Simulations. In: Castillo FL, Cristancho M, Isaza G, Pinzón A, Rodríguez CJM, editors. Advances in Computational Biology: Proceedings of the 2nd Colombian Congress on Computational Biology and Bioinformatics (CCBCOL). Cham: Springer International Publishing; 2014. pp. 265–271.

8. Aguilera-Segura SM, Núñez Vélez V, Achenie L, Álvarez Solano O, Torres R, González Barrios AF. Peptides design based on transmembrane Escherichia coli ‘ s OmpA protein through molecular dynamics simulations in water–dodecane interfaces. J Mol Graph Model. 2016;68: 216–223. doi: 10.1016/j.jmgm.2016.07.006 27474866

9. Álvarez Vanegas M, Macías Lozano A, Núñez Vélez V, Garcés Ferreira N, Castro Barrera H, Álvarez Solano O, et al. Molecular dynamics approach to investigate the coupling of the hydrophilic-lipophilic balance with the configuration distribution function in biosurfactant-based emulsions. J Mol Model. 2013;19: 5539–5543. doi: 10.1007/s00894-013-2050-2 24248913

10. Jones DB, and Middelberg Anton P. J. Mechanical Properties of Interfacially Adsorbed Peptide Networks. Langmuir. 2002;18: 10357–10362. doi: 10.1021/la0262203

11. van Gunsteren WF, Mark AE. Validation of molecular dynamics simulation. J Chem Phys. 1998;108.

12. Houghten R. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A. 1985;82: 5131–5. doi: 10.1073/pnas.82.15.5131 2410914

13. Berry JD, Neeson MJ, Dagastine RR, Chan DYC, Tabor RF. Measurement of surface and interfacial tension using pendant drop tensiometry. J Colloid Interface Sci. 2015;454: 226–237. doi: 10.1016/j.jcis.2015.05.012 26037272

14. Liyana M, Nour A, Rizauddin D, Jolius G. Stabilization and characterization of heavy crude oilin- water (o/w) emulsions. Int J Res Eng Technol. 2014;03: 489–496. doi: 10.15623/ijret.2014.0302085

15. Ruckenstein E, Nagarajan R. Critical micelle concentration. Transition point for micellar size distribution. J Phys Chem. American Chemical Society; 1975;79: 2622–2626. doi: 10.1021/j100591a010

16. Dominguez A, Fernandez A, Gonzalez N, Iglesias E, Montenegro L. Determination of Critical Micelle Concentration of Some Surfactants by Three Techniques. J Chem Educ. Division of Chemical Education; 1997;74: 1227. doi: 10.1021/ed074p1227

17. Chawla A, Buckton G, Taylor KMG, Newton JM, Johnson MCR. Wilhelmy plate contact angle data on powder compacts: considerations of plate perimeter. Eur J Pharm Sci. Elsevier; 1994;2: 253–258. doi: 10.1016/0928-0987(94)90030-2

18. Kong J, Yu S. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim Biophys Sin (Shanghai). John Wiley & Sons, Ltd (10.1111); 2007;39: 549–559. doi: 10.1111/j.1745-7270.2007.00320.x 17687489

19. Dong A, Caughey B, Caughey WS, Bhat KS, Coe JE. Secondary structure of the pentraxin female protein in water determined by infrared spectroscopy: effects of calcium and phosphorylcholine. Biochemistry. American Chemical Society; 1992;31: 9364–9370. doi: 10.1021/bi00154a006 1382589

20. Dong A, Huang P, Caughey WS. Redox-dependent changes in .beta.-extended chain and turn structures of cytochrome c in water solution determined by second derivative amide I infrared spectra. Biochemistry. American Chemical Society; 1992;31: 182–189. doi: 10.1021/bi00116a027 1310028

21. Douaire M, Di Bari V, Norton JE, Sullo A, Lillford P, Norton IT. Fat crystallisation at oil-water interfaces. Adv Colloid Interface Sci. Elsevier B.V.; 2014;203: 1–10. doi: 10.1016/j.cis.2013.10.022 24238924

22. McClements DJ, Dungan SR, German JB, Simoneau C, Kinsella JE. Droplet Size and Emulsifier Type Affect Crystallization and Melting of Hydrocarbon-in-Water Emulsions. J Food Sci. John Wiley & Sons, Ltd (10.1111); 1993;58: 1148–1151. doi: 10.1111/j.1365-2621.1993.tb06135.x

23. Clausse D, Dumas JP. Supercooling, crystallization and melting within emulsions and divided systems : mass, heat transfers and stability. Bentham Books; 2016. doi: 10.2174/97816810813041160101

24. Vanapalli SA, Palanuwech J, Coupland JN. Stability of emulsions to dispersed phase crystallization: effect of oil type, dispersed phase volume fraction, and cooling rate. Colloids Surfaces A Physicochem Eng Asp. 2002;204: 227–237. doi: 10.1016/S0927-7757(01)01135-9

25. Di Bari V, Macnaughtan W, Norton J, Sullo A, Norton I. Crystallisation in water-in-cocoa butter emulsions: Role of the dispersed phase on fat crystallisation and polymorphic transition. Food Struct. Elsevier; 2017;12: 82–93. doi: 10.1016/J.FOOSTR.2016.10.001

26. Díaz-Ponce JA, Flores EA, Lopez-Ortega A, Hernández-Cortez JG, Estrada A, Castro LV., et al. Differential scanning calorimetry characterization of water-in-oil emulsions from Mexican crude oils. J Therm Anal Calorim. 2010;102: 899–906. doi: 10.1007/s10973-010-0904-8

27. Ueno S, Hamada Y, Sato K. Controlling Polymorphic Crystallization of n-Alkane Crystals in Emulsion Droplets through Interfacial Heterogeneous Nucleation. Cryst Growth Des. 2003;3: 935–939. doi: 10.1021/cg0300230

28. Awad T, Sato K. Acceleration of crystallisation of palm kernel oil in oil-in-water emulsion by hydrophobic emulsifier additives. Colloids Surfaces B Biointerfaces. 2002;25: 45–53. doi: 10.1016/S0927-7765(01)00298-3

29. Kovalchuk K, Masalova I. Factors influencing the crystallisation of highly concentrated water-in-oil emulsions: A DSC study. S African J Sci. 2011. doi: 10.4102/sajs.v108i3/4.178

30. van Os NM, Haak JR, Rupert LAM. Physico-chemical properties of selected anionic, cationic, and nonionic surfactants. Elsevier; 1993. doi: 10.1002/recl.19941130212

31. Dalmazzone C., Noïk C., Clausse D. Applications de la DSC pour la caractérisation des systèmes émulsifiés. Oil Gas Sci Technol—Rev IFP. 2009;64: 543–555. doi: 10.2516/ogst:2008041

32. Palanuwech J, Coupland JN. Effect of surfactant type on the stability of oil-in-water emulsions to dispersed phase crystallization. Colloids Surfaces A Physicochem Eng Asp. 2003;223: 251–262. doi: 10.1016/S0927-7757(03)00169-9

33. Vanapalli SA, Palanuwech J, Coupland JN. Stability of emulsions to dispersed phase crystallization: Effect of oil type, dispersed phase volume fraction, and cooling rate. Colloids Surfaces A Physicochem Eng Asp. 2002;204: 227–237. doi: 10.1016/S0927-7757(01)01135-9

34. Holmberg K, Jönsson B, Kronberg B, Lindman B. Surfactants and Polymers in Aqueous Solution [Internet]. Chichester, UK: John Wiley & Sons, Ltd; 2002. doi: 10.1002/0470856424

35. Dumas JP, Zeraouli Y, Strub M. Heat transfer inside emulsions. Determination of the DSC thermograms. Part 1. Crystallization of the undercooled droplets. Thermochim. Acta. 1994;236: 239–248. doi: 10.1016/0040-6031(94)80271-8

36. Lorenzo AT, Müller AJ. Estimation of the nucleation and crystal growth contributions to the overall crystallization energy barrier. J Polym Sci Part B Polym Phys. Wiley-Blackwell; 2008;46: 1478–1487. doi: 10.1002/polb.21483

37. Sillero A, Ribeiro JM. Isoelectric points of proteins: theoretical determination. Anal Biochem. 1989;179: 319–25. doi: 10.1016/0003-2697(89)90136-x 2774179

38. Clausse D, Gomez F, Dalmazzone C, Noik C. A method for the characterization of emulsions, thermogranulometry: Application to water-in-crude oil emulsion. J Colloid Interface Sci. 2005;287: 694–703. 15925639

39. Schorling PC, Kessel DG, Rahimian I. Influence of the crude oil resin/asphaltene ratio on the stability of oil/water emulsions. Colloids Surfaces A Physicochem Eng Asp. 1999;152: 95–102.

40. Chang CH, Franses EI. Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms. Colloids Surfaces A Physicochem Eng Asp. Elsevier; 1995;100: 1–45. doi: 10.1016/0927-7757(94)03061-4

41. Hunter JR, Carbonell RG, Kilpatrick PK. Coadsorption and exchange of lysozyme/β-casein mixtures at the air/water interface. J Colloid Interface Sci. Academic Press; 1991;143: 37–53. doi: 10.1016/0021-9797(91)90435-B

42. Verruto VJ, Le RK, Kilpatrick PK. Adsorption and Molecular Rearrangement of Amphoteric Species at Oil−Water Interfaces. J Phys Chem B. American Chemical Society; 2009;113: 13788–13799. doi: 10.1021/jp902923j 19583194

43. Groenzin H, Mullins OC. Asphaltene Molecular Size and Structure. American Chemical Society; 1999; doi: 10.1021/JP992609W

44. Mullins OC, Betancourt SS, Cribbs ME, Dubost FX, Creek JL, Andrews AB., et al. The Colloidal Structure of Crude Oil and the Structure of Oil Reservoirs. Energy & Fuels. American Chemical Society; 2007; doi: 10.1021/EF0700883

45. Nenningsland AL, Simon S, Sjöblom J. Surface Properties of Basic Components Extracted from Petroleum Crude Oil. Energy & Fuels. American Chemical Society; 2010;24: 6501–6505. doi: 10.1021/ef101094p

46. Poteau S, Argillier JF, Langevin D, Pincet F, Perez E. Influence of pH on Stability and Dynamic Properties of Asphaltenes and Other Amphiphilic Molecules at the Oil−Water Interface. Energy & Fuels. American Chemical Society; 2005; doi: 10.1021/EF0497560

47. Strassner JE. Effect of pH on Interfacial Films and Stability of Crude Oil-Water Emulsions. J Pet Technol. Society of Petroleum Engineers; 1968;20: 303–312. doi: 10.2118/1939-PA

48. Zhai J, Hoffmann SV, Day L, Lee TH, Augustin MA, Aguilar MI., et al. Conformational Changes of α-Lactalbumin Adsorbed at Oil–Water Interfaces: Interplay between Protein Structure and Emulsion Stability. Langmuir. 2012;28: 2357–2367. doi: 10.1021/la203281c 22201548

49. Husband FA, Garrood MJ, Mackie AR, Burnett GR, Wilde PJ. Adsorbed Protein Secondary and Tertiary Structures by Circular Dichroism and Infrared Spectroscopy with Refractive Index Matched Emulsions. J Agric Food Chem. 2001;49: 859–866. doi: 10.1021/jf000688z 11262041

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden