Quantitative analysis of the bilateral coordination and gait asymmetry using inertial measurement unit-based gait analysis

Autoři: Seung Hwan Han aff001;  Chang Oh Kim aff002;  Kwang Joon Kim aff002;  Jeanhong Jeon aff001;  Hsienhao Chang aff001;  Eun Seo Kim aff001;  Hoon Park aff001
Působiště autorů: Department of Orthopaedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea aff001;  Division of Geriatrics, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0222913


Inertial measurement unit (IMU)-based gait analysis can be used to quantitatively analyze the bilateral coordination and gait asymmetry (GA). The purpose of this study was to investigate changes in bilateral coordination and GA due to gait speed using an IMU based gait analysis and identify spatiotemporal factors affecting bilateral coordination and GA. Eighty healthy adults (40 men and 40 women) participated in the study. The mean age was 26.2 years, and the mean body mass index was 22.8 kg/m2. Three different walking speeds (80%, 100%, and 120% of preferred walking speed) on a treadmill were applied for 1 min of continuous level walking using a shoe-type IMU-based gait analysis system. The phase coordination index (PCI) and GA were calculated on three different walking speeds. Several variables (gait speed, height, body mass index, cadence, and step length) were analyzed as possible factors affecting the PCI and GA. Bilateral coordination and GA improved during fast walking (p = 0.005 and p = 0.019, respectively) and deteriorated during slow walking (p<0.001 and p = 0.008, respectively), compared with the participants’ preferred walking speeds. The correlation analysis revealed that PCI was negatively correlated with step length at each walking condition and lower gait speed was negatively correlated with PCI and GA during slow walking. Both bilateral coordination and GA had a negative linear relationship with gait speed, showing an improvement in the fast walking condition and deterioration in the slow walking condition. Step length was the factor associated with the change in the bilateral coordination.

Klíčová slova:

Data acquisition – Feet – Gait analysis – Inertia – Legs – Parkinson disease – Walking – Young adults


1. Murray MP. Gait as a total pattern of movement. Am J Phys Med. 1967;46: 290–333. 5336886

2. Patterson KK, Gage WH, Brooks D, Black SE, McIlroy WE. Evaluation of gait symmetry after stroke: a comparison of current methods and recommendations for standardization. Gait Posture. 2010;31: 241–246. doi: 10.1016/j.gaitpost.2009.10.014 19932621

3. Yogev G, Plotnik M, Peretz C, Giladi N, Hausdorff JM. Gait asymmetry in patients with Parkinson's disease and elderly fallers: when does the bilateral coordination of gait require attention? Exp Brain Res. 2007;177: 336–346. doi: 10.1007/s00221-006-0676-3 16972073

4. Larsen P, Laessoe U, Rasmussen S, Graven-Nielsen T, Berre Eriksen C, Elsoe R. Asymmetry in gait pattern following tibial shaft fractures—a prospective one-year follow-up study of 49 patients. Gait Posture. 2017;51: 47–51. doi: 10.1016/j.gaitpost.2016.09.027 27701034

5. Elsoe R, Larsen P. Asymmetry in gait pattern following bicondylar tibial plateau fractures-A prospective one-year cohort study. Injury. 2017;48: 1657–1661. doi: 10.1016/j.injury.2017.04.045 28479051

6. Heredia-Jimenez J, Orantes-Gonzalez E, Soto-Hermoso VM. Variability of gait, bilateral coordination, and asymmetry in women with fibromyalgia. Gait Posture. 2016;45: 41–44. doi: 10.1016/j.gaitpost.2016.01.008 26979881

7. Plotnik M, Giladi N, Hausdorff JM. A new measure for quantifying the bilateral coordination of human gait: effects of aging and Parkinson's disease. Exp Brain Res. 2007;181: 561–570. doi: 10.1007/s00221-007-0955-7 17503027

8. Abe K, Asai Y, Matsuo Y, Nomura T, Sato S, Inoue S, et al. Classifying lower limb dynamics in Parkinson's disease. Brain Res Bull. 2003;61: 219–226. doi: 10.1016/s0361-9230(03)00119-9 12832009

9. Yoneyama M, Kurihara Y, Watanabe K, Mitoma H. Accelerometry-based gait analysis and its application to Parkinson's disease assessment- part 2: a new measure for quantifying walking behavior. IEEE Trans Neural Syst Rehabil Eng. 2013;21: 999–1005. doi: 10.1109/TNSRE.2013.2268251 23797284

10. Esser P, Dawes H, Collett J, Feltham MG, Howells K. Validity and inter-rater reliability of inertial gait measurements in Parkinson's disease: a pilot study. J Neurosci Methods. 2012;205: 177–181. doi: 10.1016/j.jneumeth.2012.01.005 22269595

11. Plotnik M, Giladi N, Hausdorff JM. Bilateral coordination of gait and Parkinson's disease: the effects of dual tasking. J Neurol Neurosurg Psychiatry. 2009;80: 347–350. doi: 10.1136/jnnp.2008.157362 19228674

12. Trojaniello D, Cereatti A, Pelosin E, Avanzino L, Mirelman A, Hausdorff JM, et al. Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: application to elderly, hemiparetic, parkinsonian and choreic gait. J Neuroeng Rehabil. 2014;11: 152. doi: 10.1186/1743-0003-11-152 25388296

13. Mariani B, Hoskovec C, Rochat S, Bula C, Penders J, Aminian K. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J Biomech. 2010;43: 2999–3006. doi: 10.1016/j.jbiomech.2010.07.003 20656291

14. Pacini Panebianco G, Bisi MC, Stagni R, Fantozzi S. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements. Gait Posture. 2018;66: 76–82. doi: 10.1016/j.gaitpost.2018.08.025 30170137

15. Lee M, Youm C, Jeon J, Cheon SM, Park H. Validity of shoe-type inertial measurement units for Parkinson's disease patients during treadmill walking. J Neuroeng Rehabil. 2018;15: 38. doi: 10.1186/s12984-018-0384-9 29764466

16. Anwary AR, Yu H, Vassallo M. An Automatic Gait Feature Extraction Method for Identifying Gait Asymmetry Using Wearable Sensors. Sensors (Basel). 2018;18.

17. Plotnik M, Bartsch RP, Zeev A, Giladi N, Hausdorff JM. Effects of walking speed on asymmetry and bilateral coordination of gait. Gait Posture. 2013;38: 864–869. doi: 10.1016/j.gaitpost.2013.04.011 23680424

18. Gimmon Y, Rashad H, Kurz I, Plotnik M, Riemer R, Debi R, et al. Gait Coordination Deteriorates in Independent Old-Old Adults. J Aging Phys Act. 2018;26: 382–389. doi: 10.1123/japa.2017-0120 28952849

19. Verghese J, Lipton RB, Hall CB, Kuslansky G, Katz MJ, Buschke H. Abnormality of gait as a predictor of non-Alzheimer's dementia. N Engl J Med. 2002;347: 1761–1768. doi: 10.1056/NEJMoa020441 12456852

20. Peterson DS, Plotnik M, Hausdorff JM, Earhart GM. Evidence for a relationship between bilateral coordination during complex gait tasks and freezing of gait in Parkinson's disease. Parkinsonism Relat Disord. 2012;18: 1022–1026. doi: 10.1016/j.parkreldis.2012.05.019 22717367

21. Kribus-Shmiel L, Zeilig G, Sokolovski B, Plotnik M. How many strides are required for a reliable estimation of temporal gait parameters? Implementation of a new algorithm on the phase coordination index. PLoS One. 2018;13: e0192049. doi: 10.1371/journal.pone.0192049 29420580

22. Choi JS, Kang DW, Seo JW, Tack GR. Reliability of the walking speed and gait dynamics variables while walking on a feedback-controlled treadmill. J Biomech. 2015;48: 1336–1339. doi: 10.1016/j.jbiomech.2015.02.047 25798762

23. Breniere Y, Do MC. When and how does steady state gait movement induced from upright posture begin? J Biomech. 1986;19: 1035–1040. doi: 10.1016/0021-9290(86)90120-x 3818673

24. Mazza C, Donati M, McCamley J, Picerno P, Cappozzo A. An optimized Kalman filter for the estimate of trunk orientation from inertial sensors data during treadmill walking. Gait Posture. 2012;35: 138–142. doi: 10.1016/j.gaitpost.2011.08.024 22047775

25. Chung MJ, Wang MJ. The change of gait parameters during walking at different percentage of preferred walking speed for healthy adults aged 20–60 years. Gait Posture. 2010;31: 131–135. doi: 10.1016/j.gaitpost.2009.09.013 19939681

26. Plotnik M, Giladi N, Hausdorff JM. Bilateral coordination of walking and freezing of gait in Parkinson's disease. Eur J Neurosci. 2008;27: 1999–2006. doi: 10.1111/j.1460-9568.2008.06167.x 18412621

27. Gimmon Y, Millar J, Pak R, Liu E, Schubert MC. Central not peripheral vestibular processing impairs gait coordination. Exp Brain Res. 2017;235: 3345–3355. doi: 10.1007/s00221-017-5061-x 28819687

28. Taborri J, Palermo E, Rossi S, Cappa P. Gait Partitioning Methods: A Systematic Review. Sensors (Basel). 2016;16.

29. Werner C, Chalvatzaki G, Papageorgiou XS, Tzafestas CS, Bauer JM, Hauer K. Assessing the concurrent validity of a gait analysis system integrated into a smart walker in older adults with gait impairments. Clin Rehabil. 2019. 2019/05/28. doi: 10.1177/0269215519852143: 269215519852143. 31131630

30. Roche B, Simon AL, Guilmin-Crepon S, Boizeau P, Andriss B, Alberti C, et al. Test-retest reliability of an instrumented electronic walkway system (GAITRite) for the measurement of spatio-temporal gait parameters in young patients with Friedreich's ataxia. Gait Posture. 2018;66: 45–50. doi: 10.1016/j.gaitpost.2018.08.017 30145474

31. Hartmann A, Luzi S, Murer K, de Bie RA, de Bruin ED. Concurrent validity of a trunk tri-axial accelerometer system for gait analysis in older adults. Gait Posture. 2009;29: 444–448. doi: 10.1016/j.gaitpost.2008.11.003 19070494

32. Bohannon RW, Williams Andrews A. Normal walking speed: a descriptive meta-analysis. Physiotherapy. 2011;97: 182–189. doi: 10.1016/j.physio.2010.12.004 21820535

33. Beauchet O, Annweiler C, Lecordroch Y, Allali G, Dubost V, Herrmann FR, et al. Walking speed-related changes in stride time variability: effects of decreased speed. J Neuroeng Rehabil. 2009;6: 32. doi: 10.1186/1743-0003-6-32 19656364

34. Kodesh E, Kafri M, Dar G, Dickstein R. Walking speed, unilateral leg loading, and step symmetry in young adults. Gait Posture. 2012;35: 66–69. doi: 10.1016/j.gaitpost.2011.08.008 21903395

35. Plotnik M, Dagan Y, Gurevich T, Giladi N, Hausdorff JM. Effects of cognitive function on gait and dual tasking abilities in patients with Parkinson's disease suffering from motor response fluctuations. Exp Brain Res. 2011;208: 169–179. doi: 10.1007/s00221-010-2469-y 21063692

36. Malatesta D, Canepa M, Menendez Fernandez A. The effect of treadmill and overground walking on preferred walking speed and gait kinematics in healthy, physically active older adults. Eur J Appl Physiol. 2017;117: 1833–1843. doi: 10.1007/s00421-017-3672-3 28687953

37. Chiu SL, Chang CC, Chou LS. Inter-joint coordination of overground versus treadmill walking in young adults. Gait Posture. 2015;41: 316–318. doi: 10.1016/j.gaitpost.2014.09.015 25304089

38. Almarwani M, VanSwearingen JM, Perera S, Sparto PJ, Brach JS. Challenging the motor control of walking: Gait variability during slower and faster pace walking conditions in younger and older adults. Arch Gerontol Geriatr. 2016;66: 54–61. doi: 10.1016/j.archger.2016.05.001 27255348

Článek vyšel v časopise


2019 Číslo 10