MRI-based visualization of rTMS-induced cortical plasticity in the primary motor cortex


Autoři: Kaori Tamura aff001;  Takahiro Osada aff001;  Akitoshi Ogawa aff001;  Masaki Tanaka aff001;  Akimitsu Suda aff001;  Yasushi Shimo aff002;  Nobutaka Hattori aff002;  Koji Kamagata aff003;  Masaaki Hori aff003;  Shigeki Aoki aff003;  Takahiro Shimizu aff004;  Hiroyuki Enomoto aff005;  Ritsuko Hanajima aff004;  Yoshikazu Ugawa aff005;  Seiki Konishi aff001
Působiště autorů: Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan aff001;  Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan aff002;  Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan aff003;  Department of Neurology, Tottori University School of Medicine, Tottori, Japan aff004;  Department of Neuro-Regeneration, Fukushima Medical University, Fukushima, Japan aff005;  Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan aff006;  Sportology Center, Juntendo University School of Medicine, Tokyo, Japan aff007;  Advanced Research Institute for Health Science, Juntendo University School of Medicine, Tokyo, Japan aff008
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224175

Souhrn

Repetitive transcranial magnetic stimulation (rTMS) induces changes in cortical excitability for minutes to hours after the end of intervention. However, it has not been precisely determined to what extent cortical plasticity prevails spatially in the cortex. Recent studies have shown that rTMS induces changes in “interhemispheric” functional connectivity, the resting-state functional connectivity between the stimulated region and the symmetrically corresponding region in the contralateral hemisphere. In the present study, quadripulse stimulation (QPS) was applied to the index finger representation in the left primary motor cortex (M1), while the position of the stimulation coil was constantly monitored by an online navigator. After QPS application, resting-state functional magnetic resonance imaging was performed, and the interhemispheric functional connectivity was compared with that before QPS. A cluster of connectivity changes was observed in the stimulated region in the central sulcus. The cluster was spatially extended approximately 10 mm from the center [half width at half maximum (HWHM): approximately 3 mm] and was extended approximately 20 mm long in depth (HWHM: approximately 7 mm). A localizer scan of the index finger motion confirmed that the cluster of interhemispheric connectivity changes overlapped spatially with the activation related to the index finger motion. These results indicate that cortical plasticity in M1 induced by rTMS was relatively restricted in space and suggest that rTMS can reveal functional dissociation associated with adjacent small areas by inducing neural plasticity in restricted cortical regions.

Klíčová slova:

Central nervous system – Electric field – Functional electrical stimulation – Functional magnetic resonance imaging – Image analysis – Left hemisphere – Magnetic resonance imaging – Transcranial magnetic stimulation


Zdroje

1. Pascual-Leone A, Walsh V, Rothwell J. Transcranial magnetic stimulation in cognitive neuroscience—virtual lesion, chronometry, and functional connectivity. Current Opinion in Neurobiology. 2000; 10: 232–237. doi: 10.1016/s0959-4388(00)00081-7 10753803

2. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007; 55: 187–199. doi: 10.1016/j.neuron.2007.06.026 17640522

3. Parkin BL, Ekhtiari H, Walsh VF. Non-invasive human brain stimulation in cognitive neuroscience: a primer. Neuron. 2015; 87: 932–945. doi: 10.1016/j.neuron.2015.07.032 26335641

4. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clinical Neurophysiology. 2015; 126: 1071–1107. doi: 10.1016/j.clinph.2015.02.001 25797650

5. Barker AT. An introduction to the basic principles of magnetic nerve stimulation. Journal of Clinical Neurophysiology. 1991; 8: 26–37. 2019648

6. Jalinous R. Technical and practical aspects of magnetic nerve stimulation. Journal of Clinical Neurophysiology. 1991; 8: 10–25. 2019644

7. Thielscher A, Kammer T. Electric field properties of two commercial figure-8 coils in TMS: calculation of focality and efficiency. Clinical Neurophysiology. 2004; 115: 1697–1708. doi: 10.1016/j.clinph.2004.02.019 15203072

8. Thielscher A, Opitz A, Windhoff M. Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. NeuroImage. 2011; 54: 234–243. doi: 10.1016/j.neuroimage.2010.07.061 20682353

9. Opitz A, Legon W, Rowlands A, Bickel WK, Paulus W, Tyler WJ. Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex. NeuroImage. 2013; 81: 253–264. doi: 10.1016/j.neuroimage.2013.04.067 23644000

10. Laakso I, Hirata A, Ugawa Y. Effects of coil orientation on the electric field induced by TMS over the hand motor area. Physics in Medicine & Biology. 2014; 59: 203–218.

11. Bungert A, Antunes A, Espenhahn S, Thielscher A. Where does TMS stimulate the motor cortex? Combining electrophysiological measurements and realistic field estimates to reveal the affected cortex position. Cerebral Cortex. 2017; 27: 5083–5094. doi: 10.1093/cercor/bhw292 27664963

12. Laakso I, Murakami T, Hirata A, Ugawa Y. Where and what TMS activates: experiments and modeling. Brain Stimulation. 2018; 11: 166–174. doi: 10.1016/j.brs.2017.09.011 29030110

13. Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J. Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. European Journal of Neuroscience. 2004; 19: 1950–1962. doi: 10.1111/j.1460-9568.2004.03277.x 15078569

14. Ruff CC, Blankenburg F, Bjoertomt O, Bestmann S, Freeman E, Haynes JD, Rees G, Josephs O, Deichmann R, Driver J. Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Current Biology. 2006; 16: 1479–1488. doi: 10.1016/j.cub.2006.06.057 16890523

15. Sack AT, Kohler A, Bestmann S, Linden DE, Dechent P, Goebel R, Baudewig J. Imaging the brain activity changes underlying impaired visuospatial judgments: simultaneous FMRI, TMS, and behavioral studies. Cerebral Cortex. 2007; 17: 2841–2852. doi: 10.1093/cercor/bhm013 17337745

16. Driver J, Blankenburg F, Bestmann S, Vanduffel W, Ruff CC. Concurrent brain-stimulation and neuroimaging for studies of cognition. Trends in Cognitive Sciences. 2009; 13: 319–327. doi: 10.1016/j.tics.2009.04.007 19540793

17. Heinen K, Ruff CC, Bjoertomt O, Schenkluhn B, Bestmann S, Blankenburg F, Driver J, Chambers CD. Concurrent TMS-fMRI reveals dynamic interhemispheric influences of the right parietal cortex during exogenously cued visuospatial attention. European Journal of Neuroscience. 2011; 33: 991–1000. doi: 10.1111/j.1460-9568.2010.07580.x 21324004

18. Leitão J, Thielscher A, Tünnerhoff J, Noppeney U. Concurrent TMS-fMRI reveals interactions between dorsal and ventral attentional systems. Journal of Neuroscience. 2015; 35: 11445–11457. doi: 10.1523/JNEUROSCI.0939-15.2015 26269649

19. Grefkes C, Nowak DA, Wang LE, Dafotakis M, Eickhoff SB, Fink GR. Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. NeuroImage. 2010; 50: 233–242. doi: 10.1016/j.neuroimage.2009.12.029 20005962

20. Schneider SA, Pleger B, Draganski B, Cordivari C, Rothwell JC, Bhatia KP, Dolan RJ. Modulatory effects of 5Hz rTMS over the primary somatosensory cortex in focal dystonia—an fMRI-TMS study. Movement Disorders. 2010; 25: 76–83. doi: 10.1002/mds.22825 20058321

21. Vercammen A, Knegtering H, Liemburg EJ, den Boer JA, Aleman A. Functional connectivity of the temporo-parietal region in schizophrenia: effects of rTMS treatment of auditory hallucinations. Journal of Psychiatric Research. 2010; 44: 725–731. doi: 10.1016/j.jpsychires.2009.12.011 20189190

22. Eldaief MC, Halko MA, Buckner RL, Pascual-Leone A. Transcranial magnetic stimulation modulates the brain’s intrinsic activity in a frequency-dependent manner. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108: 21229–21234. doi: 10.1073/pnas.1113103109 22160708

23. Fox MD, Buckner RL, White MP, Greicius MD, Pascual-Leone A. Efficacy of TMS targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biological Psychiatry. 2012; 72: 595–603. doi: 10.1016/j.biopsych.2012.04.028 22658708

24. Fox MD, Halko MA, Eldaief MC, Pascual-Leone A. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). NeuroImage. 2012; 62: 2232–2243. doi: 10.1016/j.neuroimage.2012.03.035 22465297

25. Bilek E, Schafer A, Ochs E, Esslinger C, Zangl M, Plichta MM, Braun U, Kirsch P, Schulze TG, Rietschel M, Meyer-Lindenberg A, Tost H. Application of high-frequency repetitive transcranial magnetic stimulation to the DLPFC alters human prefrontal-hippocampal functional interaction. Journal of Neuroscience. 2013; 33: 7050–7056. doi: 10.1523/JNEUROSCI.3081-12.2013 23595762

26. Chen AC, Oathes DJ, Chang C, Bradley T, Zhou ZW, Williams LM, Glover GH, Deisseroth K, Etkin A. Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proceedings of the National Academy of Sciences of the United States of America. 2013; 110: 19944–19949. doi: 10.1073/pnas.1311772110 24248372

27. Gratton C, Lee TG, Nomura EM, D’Esposito M. The effect of theta-burst TMS on cognitive control networks measured with resting state fMRI. Frontiers in Systems Neuroscience. 2013; 7: 124. doi: 10.3389/fnsys.2013.00124 24416003

28. Rahnev D, Kok P, Munneke M, Bahdo L, de Lange FP, Lau H. Continuous theta burst transcranial magnetic stimulation reduces resting state connectivity between visual areas. Journal of Neurophysiology. 2013; 110: 1811–1821. doi: 10.1152/jn.00209.2013 23883858

29. Esslinger C, Schüler N, Sauer C, Gass D, Mier D, Braun U, Ochs E, Schulze TG, Rietschel M, Kirsch P, Meyer-Lindenberg A. Induction and quantification of prefrontal cortical network plasticity using 5 Hz rTMS and fMRI. Human Brain Mapping. 2014; 35: 140–151. doi: 10.1002/hbm.22165 22965696

30. Halko MA, Farzan F, Eldaief MC, Schmahmann JD, Pascual-Leone A. Intermittent theta-burst stimulation of the lateral cerebellum increases functional connectivity of the default network. Journal of Neuroscience. 2014; 34: 12049–12056. doi: 10.1523/JNEUROSCI.1776-14.2014 25186750

31. Pitcher D, Duchaine B, Walsh V. Combined TMS and FMRI reveal dissociable cortical pathways for dynamic and static face perception. Current Biology. 2014; 24: 2066–2070. doi: 10.1016/j.cub.2014.07.060 25131678

32. Wang JX, Rogers LM, Gross EZ, Ryals AJ, Dokucu ME, Brandstatt KL, Hermiller MS, Voss JL. Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science. 2014; 345: 1054–1057. doi: 10.1126/science.1252900 25170153

33. Watanabe T, Hanajima R, Shirota Y, Ohminami S, Tsutsumi R, Terao Y, Ugawa Y, Hirose S, Miyashita Y, Konishi S, Kunimatsu A, Ohtomo K. Bidirectional effects on interhemispheric resting-state functional connectivity induced by excitatory and inhibitory repetitive transcranial magnetic stimulation. Human Brain Mapping. 2014; 35: 1896–1905. doi: 10.1002/hbm.22300 23897535

34. Andoh J, Matsushita R, Zatorre RJ. Asymmetric interhemispheric transfer in the auditory network: evidence from TMS, resting-state fMRI, and diffusion imaging. Journal of Neuroscience. 2015; 35: 14602–14611. doi: 10.1523/JNEUROSCI.2333-15.2015 26511249

35. Binney RJ, Lambon Ralph MA. Using a combination of fMRI and anterior temporal lobe rTMS to measure intrinsic and induced activation changes across the semantic cognition network. Neuropsychologia, 2015; 76: 170–181. doi: 10.1016/j.neuropsychologia.2014.11.009 25448851

36. Cocchi L, Sale MV, Lord A, Zalesky A, Breakspear M, Mattingley JB. Dissociable effects of local inhibitory and excitatory theta-burst stimulation on large-scale brain dynamics. Journal of Neurophysiology. 2015; 113: 3375–3385. doi: 10.1152/jn.00850.2014 25717162

37. Johnen VM, Neubert FX, Buch ER, Verhagen L, O’Reilly JX, Mars RB, Rushworth MF. Causal manipulation of functional connectivity in a specific neural pathway during behaviour and at rest. Elife. 2015; 4: e04585.

38. Nettekoven C, Volz LJ, Leimbach M, Pool EM, Rehme AK, Eickhoff SB, Fink GR, Grefkes C. Inter-individual variability in cortical excitability and motor network connectivity following multiple blocks of rTMS. NeuroImage. 2015; 118: 209–218. doi: 10.1016/j.neuroimage.2015.06.004 26052083

39. Valchev N, Ćurčić-Blake B, Renken RJ, Avenanti A, Keysers C, Gazzola V, Maurits NM cTBS delivered to the left somatosensory cortex changes its functional connectivity during rest. NeuroImage. 2015; 114: 386–397. doi: 10.1016/j.neuroimage.2015.04.017 25882754

40. Watanabe T, Hanajima R, Shirota Y, Tsutsumi R, Shimizu T, Hayashi T, Terao Y, Ugawa Y, Katsura M, Kunimatsu A, Ohtomo K, Hirose S, Miyashita Y, Konishi S. Effects of rTMS of pre-supplementary motor area on fronto basal ganglia network activity during stop-signal task. Journal of Neuroscience. 2015; 35: 4813–4823. doi: 10.1523/JNEUROSCI.3761-14.2015 25810512

41. Rahnev D, Nee DE, Riddle J, Larson AS, D’Esposito M. Causal evidence for frontal cortex organization for perceptual decision making. Proceedings of the National Academy of Sciences of the United States of America. 2016; 113: 6059–6064. doi: 10.1073/pnas.1522551113 27162349

42. Steel A, Song S, Bageac D, Knutson KM, Keisler A, Saad ZS, Gotts SJ, Wassermann EM, Wilkinson L. Shifts in connectivity during procedural learning after motor cortex stimulation: a combined transcranial magnetic stimulation/functional magnetic resonance imaging study. Cortex. 2016; 74: 134–148. doi: 10.1016/j.cortex.2015.10.004 26673946

43. Balan PF, Gerits A, Mantini D, Vanduffel W. Selective TMS-induced modulation of functional connectivity correlates with changes in behavior. NeuroImage. 2017; 149: 361–378. doi: 10.1016/j.neuroimage.2017.01.076 28179165

44. Hallett M, Di Iorio R, Rossini PM, Park JE, Chen R, Celnik P, Strafella AP, Matsumoto H, Ugawa Y. Contribution of transcranial magnetic stimulation to assessment of brain connectivity and networks. Clinical Neurophysiology. 2017; 128: 2125–2139. doi: 10.1016/j.clinph.2017.08.007 28938143

45. Hamada M, Hanajima R, Terao Y, Arai N, Furubayashi T, Inomata-Terada S, Yugeta A, Matsumoto H, Shirota Y, Ugawa Y. Quadro-pulse stimulation is more effective than paired-pulse stimulation for plasticity induction of the human motor cortex. Clinical Neurophysiology, 2007; 118: 2672–2682. doi: 10.1016/j.clinph.2007.09.062 17977788

46. Hamada M, Terao Y, Hanajima R, Shirota Y, Nakatani-Enomoto S, Furubayashi T, Matsumoto H, Ugawa Y. Bidirectional long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation. Journal of Physiology. 2008; 586: 3927–3947. doi: 10.1113/jphysiol.2008.152793 18599542

47. Han S, Ogawa A, Osada T, Suda A, Tanaka M, Nanjo H, Shimo Y, Hattori N, Konishi S. More subjects are required for ventrolateral than dorsolateral prefrontal TMS because of intolerability and potential drop-out. PLOS One, 2019; 14: e0217826. doi: 10.1371/journal.pone.0217826 31158248

48. Osada T, Ohta S, Ogawa A, Tanaka M, Suda A, Kamagata K, Hori M, Aoki S, Shimo Y, Hattori N, Shimizu T, Enomoto H, Hanajima R, Ugawa Y, Konishi S. An essential role of the intraparietal sulcus in response inhibition predicted by parcellation-based network. Journal of Neuroscience. 2019; 39: 2509–2521. doi: 10.1523/JNEUROSCI.2244-18.2019 30692225

49. Fitzgerald PB, Fountain S, Daskalakis ZJ. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clinical Neurophysiology. 2006; 117: 2584–2596. doi: 10.1016/j.clinph.2006.06.712 16890483

50. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005; 45: 201–206. doi: 10.1016/j.neuron.2004.12.033 15664172

51. Pascual-Leone A, Valls-Solé J, Wassermann EM, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain. 1994; 117: 847–858. doi: 10.1093/brain/117.4.847 7922470

52. Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology. 1997; 48:1398–1403. doi: 10.1212/wnl.48.5.1398 9153480

53. Nakamura K, Groiss SJ, Hamada M, Enomoto H, Kadowaki S, Abe M, Murakami T, Wiratman W, Chang F, Kobayashi S, Hanajima R, Terao Y, Ugawa Y. Variability in response to quadripulse stimulation of the motor cortex. Brain Stimulation. 2016; 9: 859–866. doi: 10.1016/j.brs.2016.01.008 27692928

54. Dubbioso R, Raffin E, Karabanov A, Thielscher A, Siebner HR. Centre-surround organization of fast sensorimotor integration in human motor hand area. Neuroimage. 2017; 158: 37–47. doi: 10.1016/j.neuroimage.2017.06.063 28669907

55. Leodori G, Thirugnanasambandam N, Conn H, Popa T, Berardelli A, Hallett M. Intracortical inhibition and surround inhibition in the motor cortex: a TMS-EEG study. Frontiers in Neuroscience. 2019; 13: 612. doi: 10.3389/fnins.2019.00612 31249507

56. Feinberg DA, Moeller S, Smith SM, Auerbach E, Ramanna S, Gunther M, Glasser MF, Miller KL, Ugurbil K, Yacoub E. Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLOS One. 2010; 5: e15710. doi: 10.1371/journal.pone.0015710 21187930

57. Andersson JL, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage. 2003; 20: 870–888. doi: 10.1016/S1053-8119(03)00336-7 14568458

58. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004; 23 Suppl 1: S208–219.

59. Worsley KJ, Friston KJ. Analysis of fMRI time-series revisited—again. NeuroImage. 1995; 2: 173–181. doi: 10.1006/nimg.1995.1023 9343600

60. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102: 9673–9678. doi: 10.1073/pnas.0504136102 15976020

61. Fair DA, Dosenbach NU, Church JA, Cohen AL, Brahmbhatt S, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL. Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Sciences of the United States of America. 2007; 104: 13507–13512. doi: 10.1073/pnas.0705843104 17679691

62. Stokes MG, Chambers CD, Gould IC, Henderson TR, Janko NE, Allen NB, Mattingley JB. Simple metric for scaling motor threshold based on scalp-cortex distance: application to studies using transcranial magnetic stimulation. Journal of Neurophysiology. 2005; 94: 4520–4527. doi: 10.1152/jn.00067.2005 16135552

63. Stokes MG, Chambers CD, Gould IC, English T, McNaught E, McDonald O, Mattingley JB. Distance-adjusted motor threshold for transcranial magnetic stimulation. Clinical Neurophysiology. 2007; 118: 1617–1625. doi: 10.1016/j.clinph.2007.04.004 17524764

64. Cai W, George JS, Chambers CD, Stokes MG, Verbruggen F, Aron AR. Stimulating deep cortical structures with the batwing coil: how to determine the intensity for transcranial magnetic stimulation using coil-cortex distance. Journal of Neuroscience Methods. 2012; 204. 238–241. doi: 10.1016/j.jneumeth.2011.11.020 22138632

65. Cai W, George JS, Verbruggen F, Chambers CD, Aron AR. The role of the right presupplementary motor area in stopping action: two studies with event-related transcranial magnetic stimulation. Journal of Neurophysiology. 2012; 108: 380–389. doi: 10.1152/jn.00132.2012 22514296

66. Iezzi E, Conte A, Suppa A, Agostino R, Dinapoli L, Scontrini A, Berardelli A. Phasic voluntary movements reverse the aftereffects of subsequent theta-burst stimulation in humans. Journal of Neurophysiology. 2008; 100: 2070–2076. doi: 10.1152/jn.90521.2008 18753328

67. Goldsworthy MR, Müller-Dahlhaus F, Ridding MC, Ziemann U. Inter-subject variability of LTD-like plasticity in human motor cortex: a matter of preceding motor activation. Brain Stimulation. 2014; 7: 864–870. doi: 10.1016/j.brs.2014.08.004 25216649

68. Kadowaki S, Enomoto H, Murakami T, Nakatani-Enomoto S, Kobayashi S, Ugawa Y. Influence of phasic muscle contraction upon the quadripulse stimulation (QPS) aftereffects. Clinical Neurophysiology. 2016; 127: 1568–1573. doi: 10.1016/j.clinph.2015.10.063 26702773

69. Esser SK, Huber R, Massimini M, Peterson MJ, Ferrarelli F, Tononi G. A direct demonstration of cortical LTP in humans: a combined TMS/EEG study. Brain Research Bulletin. 2006; 69: 86–94. doi: 10.1016/j.brainresbull.2005.11.003 16464689

70. Miyashita Y. The cutting edge in brain science and sportology. Juntendo Medical Journal. 2016; 62: 6–11.

71. Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 1962; 160: 106–154. doi: 10.1113/jphysiol.1962.sp006837 14449617

72. Bruce CJ, Goldberg ME. Primate frontal eye fields. I. Single neurons discharging before saccades. Journal of Neurophysiology. 1985; 53: 603–35. doi: 10.1152/jn.1985.53.3.603 3981231

73. Salzman CD, Murasugi CM, Britten KH, Newsome WT. Microstimulation in visual area MT: effects on direction discrimination performance. Journal of Neuroscience. 1992; 12: 2331–2355. 1607944

74. Koyano KW, Takeda M, Matsui T, Hirabayashi T, Ohashi Y, Miyashita Y. Laminar module cascade from layer 5 to 6 implementing cue-to-target conversion for object memory retrieval in the primate temporal cortex. Neuron. 2016; 92: 518–529. doi: 10.1016/j.neuron.2016.09.024 27720482

75. Tye KM, Deisseroth K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nature Reviews Neuroscience. 2012; 13: 251–266. doi: 10.1038/nrn3171 22430017

76. Sternson SM, Roth BL. Chemogenetic tools to interrogate brain functions. Annual Reviews of Neuroscience. 2014; 37: 387–407.

77. Hwang EJ, Hauschild M, Wilke M, Andersen RA. Inactivation of the parietal reach region causes optic ataxia, impairing reaches but not saccades. Neuron. 2012; 76: 1021–1029. doi: 10.1016/j.neuron.2012.10.030 23217749

78. Miyamoto K, Osada T, Setsuie R, Takeda M, Tamura K, Adachi Y, Miyashita Y. Causal neural network of metamemory for retrospection in primates. Science. 2017; 355: 188–193. doi: 10.1126/science.aal0162 28082592

79. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kotter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SA, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, Siegle GJ, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC, Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, Milham MP. Toward discovery science of human brain function. Proceedings of the National Academy of Sciences of the United States of America. 2010; 107: 4734–4739. doi: 10.1073/pnas.0911855107 20176931

80. Mars RB, Sallet J, Schuffelgen U, Jbabdi S, Toni I, Rushworth MF. Connectivity-based subdivisions of the human right "temporoparietal junction area": evidence for different areas participating in different cortical networks. Cerebral Cortex. 2012; 22: 1894–1903. doi: 10.1093/cercor/bhr268 21955921

81. Zhang S, Li CS. Functional connectivity mapping of the human precuneus by resting state fMRI. NeuroImage. 2012; 59: 3548–3562. doi: 10.1016/j.neuroimage.2011.11.023 22116037

82. Zhang S, Ide JS, Li CS. Resting-state functional connectivity of the medial superior frontal cortex. Cerebral Cortex. 2012; 22: 99–111. doi: 10.1093/cercor/bhr088 21572088

83. Hirose S, Watanabe T, Wada H, Imai Y, Machida T, Shirouzu I, Miyashita Y, Konishi S. Functional relevance of micromodules in the human association cortex delineated with high-resolution FMRI. Cerebral Cortex. 2013; 23: 2863–2871. doi: 10.1093/cercor/bhs268 22941719

84. Cai W, Ryali S, Chen T, Li CS, Menon V. Dissociable roles of right inferior frontal cortex and anterior insula in inhibitory control: evidence from intrinsic and task-related functional parcellation, connectivity, and response profile analyses across multiple datasets. Journal of Neuroscience. 2014; 34: 14652–14667. doi: 10.1523/JNEUROSCI.3048-14.2014 25355218

85. Laumann TO, Gordon EM, Adeyemo B, Snyder AZ, Joo SJ, Chen MY, Gilmore AW, McDermott KB, Nelson SM, Dosenbach NU, Schlaggar BL, Mumford JA, Poldrack RA, Petersen SE. Functional system and areal organization of a highly sampled individual human brain. Neuron. 2015; 87: 657–670. doi: 10.1016/j.neuron.2015.06.037 26212711

86. Poldrack RA, Laumann TO, Koyejo O, Gregory B, Hover A, Chen MY, Gorgolewski KJ, Luci J, Joo SJ, Boyd RL, Hunicke-Smith S, Simpson ZB, Caven T, Sochat V, Shine JM, Gordon E, Snyder AZ, Adeyemo B, Petersen SE, Glahn DC, Reese Mckay D, Curran JE, Goring HH, Carless MA, Blangero J, Dougherty R, Leemans A, Handwerker DA, Frick L, Marcotte EM, Mumford JA. Long-term neural and physiological phenotyping of a single human. Nature Communications. 2015; 6: 8885. doi: 10.1038/ncomms9885 26648521

87. Wang D, Buckner RL, Fox MD, Holt DJ, Holmes A, Stoecklein S, Langs G, Pan R, Qian T, Li K, Baker JT, Stufflebeam SM, Wang K, Wang X, Hong B, Liu H. Parcellating cortical functional networks in individuals. Nature Neuroscience. 2015; 18: 1853–1860. doi: 10.1038/nn.4164 26551545

88. Eickhoff SB, Laird AR, Fox PT, Bzdok D, Hensel L. Functional segregation of the human dorsomedial prefrontal cortex. Cerebral Cortex. 2016; 26: 304–321. doi: 10.1093/cercor/bhu250 25331597

89. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC. A multi-modal parcellation of human cerebral cortex. Nature. 2016; 536: 171–178. doi: 10.1038/nature18933 27437579

90. Hirose S, Osada T, Ogawa A, Tanaka M, Wada H, Yoshizawa Y, Imai Y, Machida T, Akahane M, Shirouzu I, Konishi S. Lateral-medial dissociation in orbitofrontal cortex-hypothalamus connectivity. Frontiers in Human Neuroscience. 2016; 10: 244. doi: 10.3389/fnhum.2016.00244 27303281

91. Gordon EM, Laumann TO, Gilmore AW, Newbold DJ, Greene DJ, Berg JJ, Ortega M, Hoyt-Drazen C, Gratton C, Sun H, Hampton JM, Coalson RS, Nguyen AL, McDermott KB, Shimony JS, Snyder AZ, Schlaggar BL, Petersen SE, Nelson SM, Dosenbach NUF. Precision functional mapping of individual human brains. Neuron. 2017; 95: 791–807.e797. doi: 10.1016/j.neuron.2017.07.011 28757305

92. Osada T, Suzuki R, Ogawa A, Tanaka M, Hori M, Aoki S, Tamura Y, Watada H, Kawamori R, Konishi S. Functional subdivisions of the hypothalamus using areal parcellation and their signal changes related to glucose metabolism. NeuroImage. 2017; 162: 1–12. doi: 10.1016/j.neuroimage.2017.08.056 28844890

93. Eickhoff SB, Yeo BTT, Genon S. Imaging-based parcellations of the human brain. Nature Reviews in Neuroscience. 2018; 19: 672–686. doi: 10.1038/s41583-018-0071-7 30305712

94. Ogawa A, Osada T, Tanaka M, Hori M, Aoki S, Nikolaidis A, Milham MP, Konishi S. Striatal subdivisions that coherently interact with multiple cerebrocortical networks. Human Brain Mapping. 2018; 39: 4349–4359. doi: 10.1002/hbm.24275 29975005


Článek vyšel v časopise

PLOS One


2019 Číslo 10