Discerning the functional networks behind processing of music and speech through human vocalizations

Autoři: Arafat Angulo-Perkins aff001;  Luis Concha aff001
Působiště autorů: Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México aff001;  Department of Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria aff002;  International Laboratory for Brain, Music and Sound (BRAMS), Montreal, Québec, Canada aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222796


A fundamental question regarding music processing is its degree of independence from speech processing, in terms of their underlying neuroanatomy and influence of cognitive traits and abilities. Although a straight answer to that question is still lacking, a large number of studies have described where in the brain and in which contexts (tasks, stimuli, populations) this independence is, or is not, observed. We examined the independence between music and speech processing using functional magnetic resonance imagining and a stimulation paradigm with different human vocal sounds produced by the same voice. The stimuli were grouped as Speech (spoken sentences), Hum (hummed melodies), and Song (sung sentences); the sentences used in Speech and Song categories were the same, as well as the melodies used in the two musical categories. Each category had a scrambled counterpart which allowed us to render speech and melody unintelligible, while preserving global amplitude and frequency characteristics. Finally, we included a group of musicians to evaluate the influence of musical expertise. Similar global patterns of cortical activity were related to all sound categories compared to baseline, but important differences were evident. Regions more sensitive to musical sounds were located bilaterally in the anterior and posterior superior temporal gyrus (planum polare and temporale), the right supplementary and premotor areas, and the inferior frontal gyrus. However, only temporal areas and supplementary motor cortex remained music-selective after subtracting brain activity related to the scrambled stimuli. Speech-selective regions mainly affected by intelligibility of the stimuli were observed on the left pars opecularis and the anterior portion of the medial temporal gyrus. We did not find differences between musicians and non-musicians Our results confirmed music-selective cortical regions in associative cortices, independent of previous musical training.

Klíčová slova:

Acoustic signals – Acoustics – Bioacoustics – Cognition – Music cognition – Music perception – Speech signal processing – Speech


1. Patel AD. Why would Musical Training Benefit the Neural Encoding of Speech? The OPERA Hypothesis. Front Psychol [Internet]. 2011 [cited 2019 Feb 28];2. Available from: http://journal.frontiersin.org/article/10.3389/fpsyg.2011.00142/abstract

2. Patel AD. Can nonlinguistic musical training change the way the brain processes speech? The expanded OPERA hypothesis. Hear Res. 2014 Feb;308:98–108. doi: 10.1016/j.heares.2013.08.011 24055761

3. Peretz I, Vuvan D, Lagrois M-É, Armony JL. Neural overlap in processing music and speech. Philos Trans R Soc Lond B Biol Sci. 2015 Mar 19;370(1664):20140090. doi: 10.1098/rstb.2014.0090 25646513

4. Pinker S. How the Mind Works. W. W. Norton & Company; 1999. 672 p.

5. Koelsch S, Gunter TC, v Cramon DY, Zysset S, Lohmann G, Friederici AD. Bach speaks: a cortical “language-network” serves the processing of music. NeuroImage. 2002 Oct;17(2):956–66. 12377169

6. Merker B. Synchronous chorusing and the origins of music. Music Sci. 1999 Sep;3(1_suppl):59–73.

7. Schmithorst VJ. Separate cortical networks involved in music perception: preliminary functional MRI evidence for modularity of music processing. NeuroImage. 2005 Apr 1;25(2):444–51. doi: 10.1016/j.neuroimage.2004.12.006 15784423

8. Schön D, Gordon R, Campagne A, Magne C, Astésano C, Anton J-L, et al. Similar cerebral networks in language, music and song perception. NeuroImage. 2010 May 15;51(1):450–61. doi: 10.1016/j.neuroimage.2010.02.023 20156575

9. Schön D, Magne C, Besson M. The music of speech: Music training facilitates pitch processing in both music and language. Psychophysiology. 2004;41(3):341–9. doi: 10.1111/1469-8986.00172.x 15102118

10. Zatorre RJ, Gandour JT. Neural specializations for speech and pitch: moving beyond the dichotomies. Philos Trans R Soc Lond B Biol Sci. 2008 Mar 12;363(1493):1087–104. doi: 10.1098/rstb.2007.2161 17890188

11. Fitch WT. Four principles of bio-musicology. Philos Trans R Soc B Biol Sci [Internet]. 2015 Mar 19 [cited 2018 Sep 6];370(1664). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321132/

12. Fitch WT. Dance, Music, Meter and Groove: A Forgotten Partnership. Front Hum Neurosci [Internet]. 2016 [cited 2018 Apr 10];10. Available from: https://www.frontiersin.org/articles/10.3389/fnhum.2016.00064/full

13. Honing H. Without it no music: beat induction as a fundamental musical trait. Ann N Y Acad Sci. 2012 Apr 1;1252(1):85–91.

14. Sergent J, Zuck E, Terriah S, MacDonald B. Distributed neural network underlying musical sight-reading and keyboard performance. Science. 1992 Jul 3;257(5066):106–9. doi: 10.1126/science.1621084 1621084

15. Corbeil M, Trehub SE, Peretz I. Speech vs. singing: infants choose happier sounds. Front Psychol. 2013;4:372. doi: 10.3389/fpsyg.2013.00372 23805119

16. Bispham JC. Music’s “design features”: Musical motivation, musical pulse, and musical pitch. Music Sci. 2009 Sep 1;13(2_suppl):41–61.


18. Aichert I, Späth M, Ziegler W. The role of metrical information in apraxia of speech. Perceptual and acoustic analyses of word stress. Neuropsychologia. 2016 Feb 1;82:171–8. doi: 10.1016/j.neuropsychologia.2016.01.009 26792367

19. Angulo-Perkins A, Aubé W, Peretz I, Barrios FA, Armony JL, Concha L. Music listening engages specific cortical regions within the temporal lobes: Differences between musicians and non-musicians. Cortex J Devoted Study Nerv Syst Behav. 2014 Aug 12;59C:126–37.

20. Norman-Haignere S, Kanwisher NG, McDermott JH. Distinct Cortical Pathways for Music and Speech Revealed by Hypothesis-Free Voxel Decomposition. Neuron. 2015 Dec;88(6):1281–96. doi: 10.1016/j.neuron.2015.11.035 26687225

21. Rogalsky C, Rong F, Saberi K, Hickok G. Functional anatomy of language and music perception: temporal and structural factors investigated using functional magnetic resonance imaging. J Neurosci Off J Soc Neurosci. 2011 Mar 9;31(10):3843–52.

22. Leaver AM, Rauschecker JP. Cortical Representation of Natural Complex Sounds: Effects of Acoustic Features and Auditory Object Category. J Neurosci. 2010 Jun 2;30(22):7604–12. doi: 10.1523/JNEUROSCI.0296-10.2010 20519535

23. Abrams DA, Bhatara A, Ryali S, Balaban E, Levitin DJ, Menon V. Decoding temporal structure in music and speech relies on shared brain resources but elicits different fine-scale spatial patterns. Cereb Cortex. 2011 Jul;21(7):1507–18. doi: 10.1093/cercor/bhq198 21071617

24. Merrill J, Sammler D, Bangert M, Goldhahn D, Lohmann G, Turner R, et al. Perception of Words and Pitch Patterns in Song and Speech. Front Psychol [Internet]. 2012 [cited 2019 Mar 12];3. Available from: https://www.frontiersin.org/articles/10.3389/fpsyg.2012.00076/full

25. Fitch WT. The biology and evolution of music: a comparative perspective. Cognition. 2006 May;100(1):173–215. doi: 10.1016/j.cognition.2005.11.009 16412411

26. MacLarnon AM, Hewitt GP. The evolution of human speech: the role of enhanced breathing control. Am J Phys Anthropol. 1999 Jul;109(3):341–63. doi: 10.1002/(SICI)1096-8644(199907)109:3<341::AID-AJPA5>3.0.CO;2-2 10407464

27. d’Errico F, Henshilwood C, Lawson G, Vanhaeren M, Tillier A-M, Soressi M, et al. Archaeological evidence for the emergence of language, symbolism, and music—An alternative multidisciplinary perspective. J World Prehistory. 2003;17(1):1–70.

28. Souza JD. Voice and Instrument at the Origins of Music. Curr Musicol. 16.

29. Molino J. Toward an evolutionary theory of music and language. In: The origins of music. Cambridge, MA, US: The MIT Press; 2000. p. 165–76.

30. Belin P, Zatorre RJ, Ahad P. Human temporal-lobe response to vocal sounds. Brain Res Cogn Brain Res. 2002 Feb;13(1):17–26. 11867247

31. Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B. Voice-selective areas in human auditory cortex. Nature. 2000 Jan 20;403(6767):309–12. doi: 10.1038/35002078 10659849

32. Callan DE, Tsytsarev V, Hanakawa T, Callan AM, Katsuhara M, Fukuyama H, et al. Song and speech: Brain regions involved with perception and covert production. NeuroImage. 2006 Jul;31(3):1327–42. doi: 10.1016/j.neuroimage.2006.01.036 16546406

33. Ozdemir E, Norton A, Schlaug G. Shared and distinct neural correlates of singing and speaking. NeuroImage. 2006 Nov 1;33(2):628–35. doi: 10.1016/j.neuroimage.2006.07.013 16956772

34. Brown S, Martinez MJ, Hodges DA, Fox PT, Parsons LM. The song system of the human brain. Cogn Brain Res. 2004 Aug;20(3):363–75.

35. Sammler D, Grosbras M-H, Anwander A, Bestelmeyer PEG, Belin P. Dorsal and Ventral Pathways for Prosody. Curr Biol CB. 2015 Dec 7;25(23):3079–85. doi: 10.1016/j.cub.2015.10.009 26549262

36. Hickok G, Buchsbaum B, Humphries C, Muftuler T. Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt. J Cogn Neurosci. 2003 Jul 1;15(5):673–82. doi: 10.1162/089892903322307393 12965041

37. Sammler D, Baird A, Valabrègue R, Clément S, Dupont S, Belin P, et al. The relationship of lyrics and tunes in the processing of unfamiliar songs: a functional magnetic resonance adaptation study. J Neurosci Off J Soc Neurosci. 2010 Mar 10;30(10):3572–8.

38. Ito T, Tiede M, Ostry DJ. Somatosensory function in speech perception. Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1245–8. doi: 10.1073/pnas.0810063106 19164569

39. Tierney A, Dick F, Deutsch D, Sereno M. Speech versus song: multiple pitch-sensitive areas revealed by a naturally occurring musical illusion. Cereb Cortex N Y N 1991. 2013 Feb;23(2):249–54.

40. Kaas JH, Hackett TA. Subdivisions of auditory cortex and processing streams in primates. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11793–9. doi: 10.1073/pnas.97.22.11793 11050211

41. Okada K, Rong F, Venezia J, Matchin W, Hsieh I-H, Saberi K, et al. Hierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech. Cereb Cortex. 2010 Oct;20(10):2486–95. doi: 10.1093/cercor/bhp318 20100898

42. Wessinger CM, VanMeter J, Tian B, Van Lare J, Pekar J, Rauschecker JP. Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J Cogn Neurosci. 2001 Jan 1;13(1):1–7. 11224904

43. Pantev C, Roberts LE, Schulz M, Engelien A, Ross B. Timbre-specific enhancement of auditory cortical representations in musicians. NeuroReport. 2001 Jan 22;12(1):169. doi: 10.1097/00001756-200101220-00041 11201080

44. Pantev C, Oostenveld R, Engelien A, Ross B, Roberts LE, Hoke M. Increased auditory cortical representation in musicians. Nature. 1998 Apr;392(6678):811–4. doi: 10.1038/33918 9572139

45. Shahin A, Bosnyak DJ, Trainor LJ, Roberts LE. Enhancement of Neuroplastic P2 and N1c Auditory Evoked Potentials in Musicians. J Neurosci. 2003 Jul 2;23(13):5545–52. doi: 10.1523/JNEUROSCI.23-13-05545.2003 12843255

46. Shahin AJ, Roberts LE, Chau W, Trainor LJ, Miller LM. Music training leads to the development of timbre-specific gamma band activity. NeuroImage. 2008 May 15;41(1):113–22. doi: 10.1016/j.neuroimage.2008.01.067 18375147

47. Fauvel B, Groussard M, Chételat G, Fouquet M, Landeau B, Eustache F, et al. Morphological brain plasticity induced by musical expertise is accompanied by modulation of functional connectivity at rest. NeuroImage. 2014 Apr 15;90:179–88. doi: 10.1016/j.neuroimage.2013.12.065 24418502

48. Grahn JA, Rowe JB. Feeling the Beat: Premotor and Striatal Interactions in Musicians and Nonmusicians during Beat Perception. J Neurosci. 2009 Jun 10;29(23):7540–8. doi: 10.1523/JNEUROSCI.2018-08.2009 19515922

49. Strait DL, Chan K, Ashley R, Kraus N. Specialization among the specialized: Auditory brainstem function is tuned in to timbre. Cortex J Devoted Study Nerv Syst Behav. 2012;48(3):360–2.

50. Herholz SC, Zatorre RJ. Musical Training as a Framework for Brain Plasticity: Behavior, Function, and Structure. Neuron. 2012 Nov 8;76(3):486–502. doi: 10.1016/j.neuron.2012.10.011 23141061

51. Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Springer JA, Kaufman JN, et al. Human temporal lobe activation by speech and nonspeech sounds. Cereb Cortex N Y N 1991. 2000 May;10(5):512–28.

52. Hickok, Poeppel. Towards a functional neuroanatomy of speech perception. Trends Cogn Sci. 2000 Apr;4(4):131–8. 10740277

53. Buchsbaum BR, Hickok G, Humphries C. Role of left posterior superior temporal gyrus in phonological processing for speech perception and production. Cogn Sci. 2001;25(5):663–78.

54. Hickok G, Buchsbaum B, Humphries C, Muftuler T. Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt. J Cogn Neurosci. 2003 Jul 1;15(5):673–82. doi: 10.1162/089892903322307393 12965041

55. Levitin DJ, Menon V. Musical structure is processed in “language” areas of the brain: a possible role for Brodmann Area 47 in temporal coherence. NeuroImage. 2003 Dec;20(4):2142–52. 14683718

56. Roskies AL, Fiez JA, Balota DA, Raichle ME, Petersen SE. Task-dependent modulation of regions in the left inferior frontal cortex during semantic processing. J Cogn Neurosci. 2001 Aug 15;13(6):829–43. doi: 10.1162/08989290152541485 11564326

57. Morosan P, Schleicher A, Amunts K, Zilles K. Multimodal architectonic mapping of human superior temporal gyrus. Anat Embryol (Berl). 2005 Dec;210(5–6):401–6. doi: 10.1007/s00429-005-0029-1 16170539

58. Woods DL, Herron TJ, Cate AD, Yund EW, Stecker GC, Rinne T, et al. Functional properties of human auditory cortical fields. Front Syst Neurosci. 2010;4:155. doi: 10.3389/fnsys.2010.00155 21160558

59. Da Costa S, van der Zwaag W, Marques JP, Frackowiak RSJ, Clarke S, Saenz M. Human primary auditory cortex follows the shape of Heschl’s gyrus. J Neurosci Off J Soc Neurosci. 2011 Oct 5;31(40):14067–75.

60. Nudds M. What Are Auditory Objects? Rev Philos Psychol. 2007;1(1):105–122.

61. Humphries C, Liebenthal E, Binder JR. Tonotopic organization of human auditory cortex. NeuroImage. 2010 Apr 15;50(3):1202–11. doi: 10.1016/j.neuroimage.2010.01.046 20096790

62. Skipper J. Echoes of the spoken past: How auditory cortex hears context during speech perception. Philos Trans R Soc Lond B Biol Sci. 2014 Sep 19;369.

63. Griffiths TD, Büchel C, Frackowiak RS, Patterson RD. Analysis of temporal structure in sound by the human brain. Nat Neurosci. 1998 Sep;1(5):422–7. doi: 10.1038/1637 10196534

64. Kleber B, Veit R, Birbaumer N, Gruzelier J, Lotze M. The brain of opera singers: experience-dependent changes in functional activation. Cereb Cortex N Y N 1991. 2010 May;20(5):1144–52.

65. Bookheimer S. Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu Rev Neurosci. 2002;25:151–88. doi: 10.1146/annurev.neuro.25.112701.142946 12052907

66. Griffiths TD, Warren JD. The planum temporale as a computational hub. Trends Neurosci. 2002 Jul;25(7):348–53. doi: 10.1016/s0166-2236(02)02191-4 12079762

67. Chen JL, Zatorre RJ, Penhune VB. Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. NeuroImage. 2006 Oct 1;32(4):1771–81. doi: 10.1016/j.neuroimage.2006.04.207 16777432

68. Chen JL, Penhune VB, Zatorre RJ. Listening to musical rhythms recruits motor regions of the brain. Cereb Cortex N Y N 1991. 2008 Dec;18(12):2844–54.

69. Grahn JA, Brett M. Rhythm and beat perception in motor areas of the brain. J Cogn Neurosci. 2007 May;19(5):893–906. doi: 10.1162/jocn.2007.19.5.893 17488212

70. Merchant H, Honing H. Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis. Front Neurosci [Internet]. 2014 [cited 2018 Sep 7];7. Available from: https://www.frontiersin.org/articles/10.3389/fnins.2013.00274/full

71. Manning F, Schutz M. “Moving to the beat” improves timing perception. Psychon Bull Rev. 2013 Dec;20(6):1133–9. doi: 10.3758/s13423-013-0439-7 23670284

72. Vuust P, Witek MAG. Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and meter perception in music. Front Psychol. 2014;5:1111. doi: 10.3389/fpsyg.2014.01111 25324813

73. Lima CF, Krishnan S, Scott SK. Roles of Supplementary Motor Areas in Auditory Processing and Auditory Imagery. Trends Neurosci. 2016 Aug;39(8):527–42. doi: 10.1016/j.tins.2016.06.003 27381836

74. Price CJ. The anatomy of language: a review of 100 fMRI studies published in 2009. Ann N Y Acad Sci. 2010 Mar;1191:62–88. doi: 10.1111/j.1749-6632.2010.05444.x 20392276

75. Price CJ. A review and synthesis of the first 20years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage. 2012 Aug 15;62(2):816–47. doi: 10.1016/j.neuroimage.2012.04.062 22584224

76. Lartillot O, Toiviainen P. A Matlab Toolbox for Musical Feature Extraction from Audio. 2007;8.

77. Aubé W, Angulo-Perkins A, Peretz I, Concha L, Armony JL. Fear across the senses: brain responses to music, vocalizations and facial expressions. Soc Cogn Affect Neurosci. 2014 May 1;

78. Beckmann CF, Jenkinson M, Smith SM. General multilevel linear modeling for group analysis in FMRI. NeuroImage. 2003 Oct;20(2):1052–63. doi: 10.1016/S1053-8119(03)00435-X 14568475

79. Woolrich MW, Behrens TEJ, Beckmann CF, Jenkinson M, Smith SM. Multilevel linear modelling for FMRI group analysis using Bayesian inference. NeuroImage. 2004 Apr;21(4):1732–47. doi: 10.1016/j.neuroimage.2003.12.023 15050594

80. Worsley KJ, Andermann M, Koulis T, MacDonald D, Evans AC. Detecting changes in nonisotropic images. Hum Brain Mapp. 1999;8(2–3):98–101. 10524599

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden