Systematic investigation on quad-metallic AgAuPdPt and tri-metallic AuPdPt NPs through the solid-state dewetting of quad-layer Ag/Au/Pd/Pt thin films on c-plane sapphire


Autoři: Mao Sui aff001;  Sundar Kunwar aff002;  Puran Pandey aff002;  Sanchaya Pandit aff002;  Jihoon Lee aff002
Působiště autorů: Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, P. R. China aff001;  Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu Seoul, South Korea aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224208

Souhrn

Multi-metallic alloy nanoparticles (MNPs) can offer valuable opportunities to meet the various demands of applications. MNPs consist of various noble metallic elements can combine diverse electronic, optical and catalytic properties in a single NP configuration, thus taking the advantage of each element. In this paper, the fabrication of tri- and quad- metallic alloy NPs with noble elements (Ag, Au, Pd and Pt) and the corresponding localized surface plasmon resonance (LPSR) properties are systematically demonstrated. Tri- and quad-metallic alloy NPs come in various size and configurations by the solid-state dewetting of Ag/Au/Pd/Pt quad-layers on sapphire (0001). Tri-metallic AuPdPt NPs are demonstrated by the systematic control of growth temperature along with the significant Ag atom sublimation. Strongly enhanced and tunable LPSR is exerted in the UV-VIS regions depending upon the size, configuration, spacing and elemental composition of the MNPs. The size dependent LSPR response of MNPs is discussed based on the absorption and scattering along with the excitation of dipolar, quadrupolar, high order and multipolar resonance modes. The MNPs exhibit much stronger and dynamic LSPR bands as compared with the monometallic Pt and Pd NPs with the comparable size and configurations.

Klíčová slova:

Heat treatment – Chemical deposition – Chemical elements – Nanoparticles – Scanning electron microscopy – Thin films – Sublimation – Atomic force microscopy


Zdroje

1. Mohan P, Takahashi M, Higashimine K, Mott D, Maenosono S. AuFePt Ternary Homogeneous Alloy Nanoparticles with Magnetic and Plasmonic Properties. Langmuir. 2017;33: 1687–1694. doi: 10.1021/acs.langmuir.6b04363 28112953

2. Londono-Calderon A, Campos-Roldan CA, González-Huerta RG, Hernandez-Pichardo ML, del Angel P, Yacaman MJ. Influence of the architecture of AuAgPt nanoparticles on the electrocatalytic activity for hydrogen evolution reaction. Int J Hydrogen Energy. 2017;42: 30208–30215. https://doi.org/10.1016/j.ijhydene.2017.08.042

3. Das GS, Sarkar S, Aggarwal R, Sonkar SK, Park J-W, Tripathi KM, et al. Fluorescent microspheres of zinc 1,2-dicarbomethoxy-1,2-dithiolate complex decorated with carbon nanotubes. Carbon Lett. 2019;

4. Begum A, Tripathi KM, Sarkar S. Water-Induced Formation, Characterization, and Photoluminescence of Carbon Nanotube-Based Composites of Gadolinium(III) and Platinum(II) Dithiolenes. Chem–A Eur J. 2014;20: 16657–16661. doi: 10.1002/chem.201404461 25331915

5. Tripathi KM, Castro M, Feller J-F, Sonkar SK. Chapter 3—Characterization of metal, semiconductor, and metal-semiconductor core–shell nanostructures. In: Gupta RK, Misra MBT-MSC-SN for E and EA, editors. Micro and Nano Technologies. Elsevier; 2017. pp. 51–77. https://doi.org/10.1016/B978-0-323-44922-9.00003-X

6. Kunwar S, Pandey P, Sui M, Bastola S, Lee J. Evolution of ternary AuAgPd nanoparticles by the control of temperature, thickness, and tri-layer. Metals (Basel). 2017;7. doi: 10.3390/met7110472

7. Sharma M, Pudasaini PR, Ruiz-Zepeda F, Vinogradova E, Ayon AA. Plasmonic Effects of Au/Ag Bimetallic Multispiked Nanoparticles for Photovoltaic Applications. ACS Appl Mater Interfaces. 2014;6: 15472–15479. doi: 10.1021/am5040939 25137194

8. Ma J, Chen Y, Chen L, Wang L. Ternary Pd–Ni–P nanoparticle-based nonenzymatic glucose sensor with greatly enhanced sensitivity achieved through active-site engineering. Nano Res. 2017;10: 2712–2720. doi: 10.1007/s12274-017-1474-x

9. Hashimoto Y, Seniutinas G, Balčytis A, Juodkazis S, Nishijima Y. Au-Ag-Cu nano-alloys: tailoring of permittivity. Sci Rep. 2016;6: 25010. Available: https://doi.org/10.1038/srep25010 27118459

10. Luo J, Wang L, Mott D, Njoki PN, Kariuki N, Zhong C-J, et al. Ternary alloy nanoparticles with controllable sizes and composition and electrocatalytic activity. J Mater Chem. 2006;16: 1665–1673. doi: 10.1039/B518287E

11. Dutta A, Ouyang J. Ternary NiAuPt Nanoparticles on Reduced Graphene Oxide as Catalysts toward the Electrochemical Oxidation Reaction of Ethanol. ACS Catal. 2015;5: 1371–1380. doi: 10.1021/cs501365y

12. Zhang H, Okumura M, Toshima N. Stable Dispersions of PVP-Protected Au/Pt/Ag Trimetallic Nanoparticles as Highly Active Colloidal Catalysts for Aerobic Glucose Oxidation. J Phys Chem C. 2011;115: 14883–14891. doi: 10.1021/jp203457f

13. Park SJ, Das GS, Schütt F, Adelung R, Mishra YK, Tripathi KM, et al. Visible-light photocatalysis by carbon-nano-onion-functionalized ZnO tetrapods: degradation of 2,4-dinitrophenol and a plant-model-based ecological assessment. NPG Asia Mater. 2019;11: 8. doi: 10.1038/s41427-019-0107-0

14. Ostrom CK, Chen A. Synthesis and Electrochemical Study of Pd-Based Trimetallic Nanoparticles for Enhanced Hydrogen Storage. J Phys Chem C. 2013;117: 20456–20464. doi: 10.1021/jp405923n

15. Zhang J, Wan L, Liu L, Deng Y, Zhong C, Hu W. PdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced catalytic activities. Nanoscale. 2016;8: 3962–3972. doi: 10.1039/c5nr05971b 26511671

16. Zhou L-N, Zhang X-T, Wang Z-H, Guo S, Li Y-J. Cubic superstructures composed of PtPd alloy nanocubes and their enhanced electrocatalysis for methanol oxidation. Chem Commun. 2016;52: 12737–12740. doi: 10.1039/C6CC07338G 27722325

17. Herz A, Franz A, Theska F, Hentschel M, Kups T, Wang D, et al. Solid-state dewetting of single- and bilayer Au-W thin films: Unraveling the role of individual layer thickness, stacking sequence and oxidation on morphology evolution. AIP Adv. 2016;6: 35109. doi: 10.1063/1.4944348

18. Ruffino F. Experimental Analysis on the Molten-Phase Dewetting Characteristics of AuPd Alloy Films on Topographically-Structured Substrates. Metals. 2017. doi: 10.3390/met7090327

19. Nugroho FAA, Iandolo B, Wagner JB, Langhammer C. Bottom-Up Nanofabrication of Supported Noble Metal Alloy Nanoparticle Arrays for Plasmonics. ACS Nano. 2016;10: 2871–2879. doi: 10.1021/acsnano.5b08057 26828308

20. Kang M, Ahn M-S, Lee Y, Jeong K-H. Bioplasmonic Alloyed Nanoislands Using Dewetting of Bilayer Thin Films. ACS Appl Mater Interfaces. 2017;9: 37154–37159. doi: 10.1021/acsami.7b10715 28949500

21. Seo O, Oh SA, Lee JY, Ha SS, Kim JM, Choi JW, et al. Controlling the alloy composition of PtNi nanocrystals using solid-state dewetting of bilayer films. J Alloys Compd. 2016;667: 141–145. https://doi.org/10.1016/j.jallcom.2016.01.111

22. Liu H, Nosheen F, Wang X. Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property. Chem Soc Rev. 2015;44: 3056–3078. doi: 10.1039/c4cs00478g 25793455

23. Li M-Y, Yu M, Su D, Zhang J, Jiang S, Wu J, et al. Ultrahigh Responsivity UV Photodetector Based on Cu Nanostructure/ZnO QD Hybrid Architectures. Small. 2019;15: 1901606. doi: 10.1002/smll.201901606 31140743

24. Palik ED, Ghosh G. Handbook of optical constants of solids [Internet]. San Diego: Academic Press; 1998. http://public.eblib.com/choice/publicfullrecord.aspx?p=328563

25. Rakić AD, Djurišić AB, Elazar JM, Majewski ML. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt. 1998;37: 5271–5283. doi: 10.1364/ao.37.005271 18286006

26. Yang G, Fu XJ, Sun JB, Zhou J. Spectroscopic ellipsometry study on the optical dielectric properties of silver platinum alloy thin films. J Alloys Compd. 2013;551: 352–359. doi: 10.1016/j.jallcom.2012.10.033

27. Qiu G, Ng SP, Wu C-ML. Bimetallic Au-Ag alloy nanoislands for highly sensitive localized surface plasmon resonance biosensing. Sensors Actuators B Chem. 2018;265: 459–467. https://doi.org/10.1016/j.snb.2018.03.066

28. Wang D, Schaaf P. Ni–Au bi-metallic nanoparticles formed via dewetting. Mater Lett. 2012;70: 30–33. https://doi.org/10.1016/j.matlet.2011.11.102

29. Braidy N, Purdy GR, Botton GA. Equilibrium and stability of phase-separating Au–Pt nanoparticles. Acta Mater. 2008;56: 5972–5983. https://doi.org/10.1016/j.actamat.2008.08.024

30. Noah MA, Flötotto D, Wang Z, Mittemeijer EJ. Interdiffusion and stress development in single-crystalline Pd/Ag bilayers. J Appl Phys. 2016;119: 145308. doi: 10.1063/1.4945673

31. Thompson C V. Solid-State Dewetting of Thin Films. Annu Rev Mater Res. 2012;42: 399–434. doi: 10.1146/annurev-matsci-070511-155048

32. Strobel S, Kirkendall C, Chang J-B, Berggren KK. Sub-10 nm structures on silicon by thermal dewetting of platinum. Nanotechnology. 2010;21: 505301. doi: 10.1088/0957-4484/21/50/505301 21098926

33. Langhammer C, Yuan Z, Zorić I, Kasemo B. Plasmonic Properties of Supported Pt and Pd Nanostructures. Nano Lett. 2006;6: 833–838. doi: 10.1021/nl060219x 16608293

34. Kelly KL, Coronado E, Zhao LL, Schatz GC. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J Phys Chem B. 2003;107: 668–677. doi: 10.1021/jp026731y

35. Langhammer C, Kasemo B, Zorić I. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios. J Chem Phys. 2007;126: 194702. doi: 10.1063/1.2734550 17523823

36. Paris A, Vaccari A, Calà Lesina A, Serra E, Calliari L. Plasmonic Scattering by Metal Nanoparticles for Solar Cells. Plasmonics. 2012;7: 525–534. doi: 10.1007/s11468-012-9338-4

37. Kwon J-Y, Yoon T-S, Kim K-B, Min S-H. Comparison of the agglomeration behavior of Au and Cu films sputter deposited on silicon dioxide. J Appl Phys. 2003;93: 3270–3278. doi: 10.1063/1.1556178

38. Amram D, Klinger L, Rabkin E. Anisotropic hole growth during solid-state dewetting of single-crystal Au–Fe thin films. Acta Mater. 2012;60: 3047–3056. https://doi.org/10.1016/j.actamat.2012.02.009

39. Grimaldi MG. Rayleigh-instability-driven dewetting of thin Au and Ag films on indium–tin-oxide surface under nanosecond laser irradiations. Micro Nano Lett. 2013;8: 127–130(3). Available: https://digital-library.theiet.org/content/journals/10.1049/mnl.2012.0870

40. Kunwar S, Pandey P, Sui M, Bastola S, Lee J. Morphological and optical properties of PdxAg1-x alloy nanoparticles. Sci Technol Adv Mater. 2018;19: 160–173. doi: 10.1080/14686996.2018.1435944 29511394


Článek vyšel v časopise

PLOS One


2019 Číslo 10