The FTO genetic variants are associated with dietary intake and body mass index amongst Emirati population

Autoři: Maha Saber-Ayad aff001;  Shaista Manzoor aff001;  Hadia Radwan aff001;  Sarah Hammoudeh aff001;  Rahaf Wardeh aff001;  Ahmed Ashraf aff001;  Hussein Jabbar aff001;  Rifat Hamoudi aff001
Působiště autorů: College of Medicine, University of Sharjah, Sharjah, UAE aff001;  Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE aff002;  College of Medicine, Cairo University, Cairo, Egypt aff003;  Clinical Nutrition and Dietetics Department, College of Health Sciences, University of Sharjah, Sharjah, UAE aff004
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223808



The risk of obesity is determined by complex interactions between genetic and environmental factors. Little research to date has investigated the interaction between gene and food intake. The aim of the current study is to explore the potential effect of fat mass and obesity-associated protein gene (FTO) rs9939609 and rs9930506 single nucleotide polymorphism (SNP) on the pattern of food intake in the Emirati population.


Adult healthy Emirati subjects with Body mass index (BMI) of 16–40 kg/m2 were included in the study. Genotyping for FTO rs9939609(A>T) and rs9930506(A>G) was performed using DNA from saliva samples. Subjects were categorized according to the WHO classification by calculating the BMI to compare different classes. Dietary intake was assessed by a sixty-one-item FFQ that estimated food and beverage intakes over the past year. The daily energy, macronutrient, and micronutrient consumption were computed.


We included 169 subjects in the final analysis (mean age 30.49± 9.1years, 57.4% females). The mean BMI of the study population was 26.19 kg/m2. Both SNPs were in Hardy Weinberg Equilibrium. The rs9939609 AA genotype was significantly associated with higher BMI (p = 0.004); the effect was significant in females (p = 0.028), but not in males (p = 0.184). Carbohydrate intake was significantly higher in AA subjects with a trend of lower fat intake compared to other genotypes. The odds ratio for the AA was 3.78 in the fourth quartile and 2.67 for the A/T in the second quartile of total carbohydrate intake, considering the first quartile as a reference (95% CI = 1.017–14.1 and 1.03–6.88, respectively). Fat intake was significantly lower in the FTO rs9930506 GG subjects. The presence of FTO rs9930506 GG genotype decreased the fat intake in subjects with FTO rs9939609 AA (p = 0.037).


The results of this study highlight the interaction of the FTO risk alleles on the food intake in Emirati subjects. The FTO rs9939609 AA subjects had higher carbohydrate and lower fat intake. The latter was accentuated in presence of rs9930506 GG genotype.

Klíčová slova:

Alleles – Body mass index – Carbohydrates – Fats – Food – Genotyping – Molecular genetics – Obesity


1. Low S, Chin MC, Deurenberg-Yap M. Review on epidemic of obesity. Ann Acad Med Singapore. 2009;38: 57–9. Available: 19221672

2. Castillo JJ, Orlando RA, Garver WS. Gene-nutrient interactions and susceptibility to human obesity. Genes Nutr. 2017;12: 29. doi: 10.1186/s12263-017-0581-3 29093760

3. Bouchard C. Childhood obesity: are genetic differences involved? Am J Clin Nutr. 2009;89: 1494S–1501S. doi: 10.3945/ajcn.2009.27113C 19261728

4. Elks CE, den Hoed M, Zhao JH, Sharp SJ, Wareham NJ, Loos RJF, et al. Variability in the Heritability of Body Mass Index: A Systematic Review and Meta-Regression. Front Endocrinol (Lausanne). 2012;3. doi: 10.3389/fendo.2012.00029 22645519

5. Christiansen E, Swann A, Sørensen TIA. Feedback models allowing estimation of thresholds for self-promoting body weight gain. J Theor Biol. 2008;254: 731–736. doi: 10.1016/j.jtbi.2008.07.004 18671981

6. Robinson MR, Hemani G, Medina-Gomez C, Mezzavilla M, Esko T, Shakhbazov K, et al. Population genetic differentiation of height and body mass index across Europe. Nat Genet. 2015;47: 1357–1362. doi: 10.1038/ng.3401 26366552

7. Loos RJF, Yeo GSH. The bigger picture of FTO—the first GWAS-identified obesity gene. Nat Rev Endocrinol. 2014;10: 51–61. doi: 10.1038/nrendo.2013.227 24247219

8. Hunt SC, Stone S, Xin Y, Scherer CA, Magness CL, Iadonato SP, et al. Association of the FTO Gene With BMI. Obesity. 2008;16: 902–904. doi: 10.1038/oby.2007.126 18239580

9. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. Science (80-). 2007;316: 889–894. doi: 10.1126/science.1141634 17434869

10. Cyrus C, Ismail MH, Chathoth S, Vatte C, Hasen M, Al Ali A. Analysis of the Impact of Common Polymorphisms of the FTO and MC4R Genes with the Risk of Severe Obesity in Saudi Arabian Population. Genet Test Mol Biomarkers. 2018;22: 170–177. doi: 10.1089/gtmb.2017.0218 29466028

11. A. A-S, S.A. A-B, M. K, D. T, O. A, R. A-T, et al. Association of FTO rs9939609 with Obesity in the Kuwaiti Population: A Public Health Concern? Med Princ Pract. 2018; doi: 10.1159/000486767 29402776

12. Khan SM, El HajjChehadeh S, Abdulrahman M, Osman W, Al Safar H. Establishing a genetic link between FTO and VDR gene polymorphisms and obesity in the Emirati population. BMC Med Genet. 2018;19. doi: 10.1186/s12881-018-0522-z 29343214

13. Sabarneh A, Ereqat S, Cauchi S, AbuShamma O, Abdelhafez M, Ibrahim M, et al. Common FTO rs9939609 variant and risk of type 2 diabetes in Palestine. BMC Med Genet. 2018;19: 156. doi: 10.1186/s12881-018-0668-8 30170548

14. Khella MS, Hamdy NM, Amin AI, El-Mesallamy HO. The (FTO) gene polymorphism is associated with metabolic syndrome risk in Egyptian females: a case- control study. BMC Med Genet. 2017;18: 101. doi: 10.1186/s12881-017-0461-0 28915859

15. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007;3: 1200–1210. doi: 10.1371/journal.pgen.0030115 17658951

16. Radwan Hadia, Ballout Rami A., Hasan Hayder, Lessan Nader, Karavetian Mirey and RR. The Epidemiology and Economic Burden of Obesity and Related Cardiometabolic Disorders in the United Arab Emirates: A Systematic Review and Qualitative Synthesis. J Obes. 2018; doi: 10.1155/2018/2185942 30652030

17. Ng SW, Zaghloul S, Ali HI, Harrison G, Popkin BM. The prevalence and trends of overweight, obesity and nutrition-related non-communicable diseases in the Arabian Gulf States. Obes Rev. 2011;12: 1–13. doi: 10.1111/j.1467-789X.2010.00750.x 20546144

18. World Health Organization (WHO). Obesity: Preventing and Managing the Global Epidemic. WHO Tech Rep Ser. 2000; doi:ISBN 92 4 120894 5

19. Naja F, Nasreddine L, Itani L, Chamieh MC, Adra N, Sibai AM, et al. Dietary patterns and their association with obesity and sociodemographic factors in a national sample of Lebanese adults. Public Health Nutr. 2011;14: 1570–1578. doi: 10.1017/S136898001100070X 21557871

20. Saber-Ayad M, Manzoor S, El Serafi A, Mahmoud I, Hammoudeh S, Rani A, et al. The FTO rs9939609 “A” allele is associated with impaired fasting glucose and insulin resistance in Emirati population. Gene. 2019;681: 93–98. doi: 10.1016/j.gene.2018.09.053 30273662

21. Rodriguez S, Gaunt TR, Day INM. Hardy-Weinberg Equilibrium Testing of Biological Ascertainment for Mendelian Randomization Studies. Am J Epidemiol. 2009;169: 505–514. doi: 10.1093/aje/kwn359 19126586

22. Locke A, Kahali B, Berndt S, Justice A, Pers T. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518: 197–206. doi: 10.1038/nature14177 25673413

23. Shabana, Hasnain S. Effect of the Common Fat Mass and Obesity Associated Gene Variants on Obesity in Pakistani Population: A Case-Control Study. Biomed Res Int. 2015;2015: 1–8. doi: 10.1155/2015/852920 26357660

24. Baturin AK, Sorokina EIu, Pogozheva AV, Anokhina OV TV. The study of FTO rs9939609-gene polymorphism in the Sverdlovsk Region. Vopr Pitan. 2012;81: 28–32.

25. Li H, Wu Y, Loos RJ, Hu FB, Liu Y, Wang J, et al. Variants in the fat mass- and obesity-associated (FTO) gene are not associated with obesity in a Chinese Han population. Diabetes. 2008;57: 264–268. doi: 10.2337/db07-1130 17959933

26. Jacobsson JA, Danielsson P, Svensson V, Klovins J, Gyllensten U, Marcus C, et al. Major gender difference in association of FTO gene variant among severely obese children with obesity and obesity related phenotypes. Biochem Biophys Res Commun. 2008;368: 476–482. doi: 10.1016/j.bbrc.2008.01.087 18249188

27. Zhang M, Zhao X, Cheng H, Wang L, Xi B, Shen Y, et al. Age- and Sex-Dependent Association between FTO rs9939609 and Obesity-Related Traits in Chinese Children and Adolescents. Li S, editor. PLoS One. 2014;9: e97545. doi: 10.1371/journal.pone.0097545 24827155

28. Hallman DM, Friedel VC, Eissa MAH, Boerwinkle E, Huber JC, Harrist RB, et al. The association of variants in the FTO gene with longitudinal body mass index profiles in non-Hispanic white children and adolescents. Int J Obes. 2012; doi: 10.1038/ijo.2011.190 21986706

29. Young AI, Wauthier F, Donnelly P. Multiple novel gene-by-environment interactions modify the effect of FTO variants on body mass index. Nat Commun. 2016;7: 12724. doi: 10.1038/ncomms12724 27596730

30. Liu J, Tuvblad C, Raine A, Baker L. Genetic and environmental influences on nutrient intake. Genes Nutr. 2013;8: 241–252. doi: 10.1007/s12263-012-0320-8 23055091

31. Malik VS, Popkin BM, Bray GA, Després JP, Hu FB. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation. 2010. doi: 10.1161/CIRCULATIONAHA.109.876185 20308626

32. Cecil JE, Tavendale R, Watt P, Hetherington MM, Palmer CNA, Ph D, et al. An obesity-associated FTO gene variant and increased energy intake in children. N Engl J Med. 2008;359: 2558–2566. doi: 10.1056/NEJMoa0803839 19073975

33. Wardle J, Carnell S, Haworth CMA, Farooqi IS, O’Rahilly S, Plomin R. Obesity associated genetic variation in FTO is associated with diminished satiety. J Clin Endocrinol Metab. 2008;93: 3640–3643. doi: 10.1210/jc.2008-0472 18583465

34. Hebert JR, Ma Y, Clemow L, Ockene IS, Saperia G, Stanek EJ, et al. Gender Differences in Social Desirability and Social Approval Bias in Dietary Self-report. Am J Epidemiol. 1997;146: 1046–1055. doi: 10.1093/oxfordjournals.aje.a009233 9420529

35. Sonestedt E, Roos C, Gullberg B, Ericson U, Wirfält E, Orho-Melander M. Fat and carbohydrate intake modify the association between genetic variation in the FTO genotype and obesity. Am J Clin Nutr. 2009;90: 1418–1425. doi: 10.3945/ajcn.2009.27958 19726594

36. Rosenquist JN, Lehrer SF, O’Malley AJ, Zaslavsky AM, Smoller JW, Christakis NA. Cohort of birth modifies the association between FTO genotype and BMI. Proc Natl Acad Sci. 2015; doi: 10.1073/pnas.1411893111 25548176

37. Lourenço BH, Qi L, Willett WC, Cardoso MA. FTO genotype, vitamin D status, and weight gain during childhood. Diabetes. 2014;63: 808–814. doi: 10.2337/db13-1290 24130335

38. Melhorn SJ, Askren MK, Chung WK, Kratz M, Bosch TA, Tyagi V, et al. FTO genotype impacts food intake and corticolimbic activation. Am J Clin Nutr. 2018;107: 145–154. doi: 10.1093/ajcn/nqx029 29529147

39. Fawcett KA, Barroso I. The genetics of obesity: FTO leads the way. Trends Genet. 2010;26: 266–274. doi: 10.1016/j.tig.2010.02.006 20381893

40. Doo M, Kim Y. Obesity: Interactions of Genome and Nutrients Intake. Prev Nutr Food Sci. 2015;20: 1–7. doi: 10.3746/pnf.2015.20.1.1 25866743

41. Akram DS, Astrup A V, Atinmo T, Boissin JL, Bray GA, Carroll KK, et al. Obesity: Preventing and managing the global epidemic. World Health Organization—Technical Report Series. 2000.

42. Giskes K, van Lenthe F, Avendano-Pabon M, Brug J. A systematic review of environmental factors and obesogenic dietary intakes among adults: are we getting closer to understanding obesogenic environments? Obes Rev. 2011;12: e95—e106. doi: 10.1111/j.1467-789X.2010.00769.x 20604870

43. Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian S-B. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature. 2015;526: 591–594. doi: 10.1038/nature15377 26458103

44. Berulava T, Horsthemke B. The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levels. Eur J Hum Genet. 2010;18: 1054–1056. doi: 10.1038/ejhg.2010.71 20512162

45. Karra E, O’Daly OG, Choudhury AI, Yousseif A, Millership S, Neary MT, et al. A link between FTO, ghrelin, and impaired brain food-cue responsivity. J Clin Invest. 2013;123: 3539–3551. doi: 10.1172/JCI44403 23867619

46. Claussnitzer M, Dankel SN, Kim K-H, Quon G, Meuleman W, Haugen C, et al. FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. N Engl J Med. 2015;373: 895–907. doi: 10.1056/NEJMoa1502214 26287746

47. Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gómez-Marín C, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. 2014;507: 371–375. doi: 10.1038/nature13138 24646999

48. TM de Araujo DS Razolli FC-S. The partial inhibition of hypothalamic IRX3 exacerbates obesity. EBioMed. 2018;in print.

49. Schneeberger M. Irx3, a new leader on obesity genetics. EBioMed. 2018;in print.

50. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45: D362–D368. doi: 10.1093/nar/gkw937 27924014

51. Nielsen R, Akey JM, Jakobsson M, Pritchard JK, Tishkoff S, Willerslev E. Tracing the peopling of the world through genomics. Nature. 2017;541: 302–310. doi: 10.1038/nature21347 28102248

52. Al-Ali M, Osman W, Tay GK, AlSafar HS. A 1000 Arab genome project to study the Emirati population. J Hum Genet. 2018;63: 533–536. doi: 10.1038/s10038-017-0402-y 29410509

53. Garcia-Bertrand R, Simms TM, Cadenas AM, Herrera RJ. United Arab Emirates: Phylogenetic relationships and ancestral populations. Gene. 2014;533: 411–419. doi: 10.1016/j.gene.2013.09.092 24120897

54. Al-Gazali L, Ali BR. Mutations of a country: a mutation review of single gene disorders in the United Arab Emirates (UAE). Hum Mutat. 2010;31: 505–520. doi: 10.1002/humu.21232 20437613

Článek vyšel v časopise


2019 Číslo 10