Analytic performance of PANArray HPV and HPV 9G DNA chip tests for genotyping of high-risk human papillomavirus in cervical ThinPrep PreservCyt samples

Autoři: Jiyoung Kim aff001;  Sun-Young Jun aff001
Působiště autorů: Department of Pathology, Incheon St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article


The detection of high-risk human papillomavirus (HR-HPV) is important for early diagnosis of precancerous cervical lesion. The distribution of HR-HPV genotypes in East Asia is different from that in Western countries. HR-HPVs non-16/18 including HPV-58 are highly prevalent in East Asia. Thus, a variety of HPV tests that could identify individual genotypes have been widely used. HPV 9G DNA is a deoxyribonucleic acid-based chip test, while PANArray HPV chip is a peptide nucleic acid-based array. We compared the analytic performance of these two chips for detecting and genotyping HR-HPV using 356 liquid-based cytology specimens and evaluated their diagnostic accuracies based on direct sequencing. For identifying HR-HPV, PANArray HPV and HPV 9G DNA chips agreed with each other for 85.1% of samples. Overall strength of agreement between the two tests was substantial (k = 0.68). Specifically, these two tests almost perfectly agreed for detecting several types of HR-HPV, including HPV-16, -18, -35, -52, -58, and -59 (k>0.81 for all). According to direct sequencing, PANArray HPV produced consistently higher sensitivities for detecting HR-HPV than HPV 9G DNA for either overall or individual genotypes of HR-HPV. Sensitivities and specificities for detecting HPV-58 were perfect (100%) with PANArray HPV. In conclusion, PANArray HPV is more effective than HPV 9G DNA in detecting HR-HPV. It is more useful for regions with high prevalent HPV-58 infection.

Klíčová slova:

DNA – Genotyping – HPV-16 – Human papillomavirus – Human papillomavirus infection – Polymerase chain reaction – Direct sequencing – HPV-18


1. Priebe AM. 2012 cervical cancer screening guidelines and the future role of HPV testing. Clin Obstet Gynecol. 2013;56(1): 44–50. Epub 2013/01/23. doi: 10.1097/GRF.0b013e3182836b6a 23337843

2. Stoler MH, Wright TC Jr., Sharma A, Apple R, Gutekunst K, Wright TL, et al. High-risk human papillomavirus testing in women with ASC-US cytology: results from the ATHENA HPV study. Am J Clin Pathol. 2011;135(3): 468–475. Epub 2011/02/26. doi: 10.1309/AJCPZ5JY6FCVNMOT 21350104

3. Dunant N, Dobry S, Kráčala S, Schmitt C, Schwab-Hautzinger N. FDA approves Roche's HPV test for first-line primary screening for cervical cancer: F. Hoffmann-La Roche Ltd; 2014 [updated 25 April 2014; cited 2019 3 October]. Available from:

4. Wright T, Ronnett B, Kurman R, Ferenczy A. Precancerous lesions of the cervix. In: Kurman R, Ellenson L, Ronnett B, editors. Blaustein's pathology of the female genital tract. 6th ed. NY: Springer; 2011. pp. 193–252.

5. Chan PK. Human papillomavirus type 58: the unique role in cervical cancers in East Asia. Cell Biosci. 2012;2(1): 17. Epub 2012/05/11. doi: 10.1186/2045-3701-2-17 22571619

6. Song JS, Kim EJ, Choi J, Gong G, Sung CO. Significance of HPV-58 infection in women who are HPV-positive, cytology-negative and living in a country with a high prevalence of HPV-58 infection. PLoS One. 2013;8(3): e58678. Epub 2013/03/19. doi: 10.1371/journal.pone.0058678 23505548

7. An H, Song KS, Nimse SB, Kim J, Nguyen VT, Ta VT, et al. HPV 9G DNA chip: 100% clinical sensitivity and specificity. J Clin Microbiol. 2012;50(3): 562–568. doi: 10.1128/JCM.06217-11 22170909

8. Song KS, Nimse SB, An H, Kim J, Nguyen VT, Ta VT, et al. HPV 9G DNAChip: Based on the 9G DNAChip technology. J Virol Methods. 2012;183(2): 132–138. doi: 10.1016/j.jviromet.2012.04.003 22561985

9. Choi JJ, Kim C, Park H. Peptide nucleic acid-based array for detecting and genotyping human papillomaviruses. J Clin Microbiol. 2009;47(6): 1785–1790. doi: 10.1128/JCM.01398-08 19369432

10. Pellestor F, Paulasova P. The peptide nucleic acids, efficient tools for molecular diagnosis (Review). Int J Mol Med. 2004;13(4): 521–525. Epub 2004/03/11. 15010851

11. Karkare S, Bhatnagar D. Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino. Appl Microbiol Biotechnol. 2006;71(5): 575–586. Epub 2006/05/10. doi: 10.1007/s00253-006-0434-2 16683135

12. BMT HPV 9G DNA Kit: Biometrix technology Inc.; 2010 [updated 17 December 2010; cited 2019 04 October]. Available from:

13. Karlsen F, Kalantari M, Jenkins A, Pettersen E, Kristensen G, Holm R, et al. Use of multiple PCR primer sets for optimal detection of human papillomavirus. J Clin Microbiol. 1996;34(9): 2095–2100. Epub 1996/09/01. 8862564

14. Jung HY, Han HS, Kim HB, Oh SY, Lee SJ, Kim WY. Comparison of analytical and clinical performance of HPV 9G DNA chip, PANArray HPV genotyping chip, and Hybrid-Capture II assay in cervicovaginal swabs. J Pathol Transl Med. 2016;50(2): 138–146. doi: 10.4132/jptm.2015.10.21 26763506

15. Jun SY, Park ES, Kim J, Kang J, Lee JJ, Bae Y, et al. Comparison of the Cobas 4800 HPV and HPV 9G DNA chip tests for detection of high-risk human papillomavirus in cervical specimens of women with consecutive positive HPV tests but negative Pap smears. PLoS One. 2015;10(10): e0140336. doi: 10.1371/journal.pone.0140336 26469982

16. Robadi IA, Pharaon M, Ducatman BS. The importance of high-risk human papillomavirus types other than 16 and 18 in cervical neoplasia. Arch Pathol Lab Med. 2018;142(6): 693–695. Epub 2018/06/01. doi: 10.5858/arpa.2017-0563-RA 29848032

17. Biologic agents. Volume 100B. A review of human carcingenes. IARC monographs on the evaluation of carcinogenic risk to humans. Lyon, France: IARC; 2012.

18. Kim IS. Prevalence and genotype distribution of cervical human papillomavirus DNA in Korean women: a multicenter study. J Pathol Transl Med. 2009;43: 342–350.

19. Xu HH, Lin A, Chen YH, Dong SS, Shi WW, Yu JZ, et al. Prevalence characteristics of cervical human papillomavirus (HPV) genotypes in the Taizhou area, China: a cross-sectional study of 37967 women from the general population. BMJ Open. 2017;7(6): e014135. Epub 2017/06/12. doi: 10.1136/bmjopen-2016-014135 28601819

20. Monsonego J, Cox JT, Behrens C, Sandri M, Franco EL, Yap PS, et al. Prevalence of high-risk human papilloma virus genotypes and associated risk of cervical precancerous lesions in a large U.S. screening population: data from the ATHENA trial. Gynecol Oncol. 2015;137(1): 47–54. Epub 2015/02/11. doi: 10.1016/j.ygyno.2015.01.551 25667973

21. Song HJ, Lee JW, Kim BG, Song SY, Bae DS, Kim DS. Comparison of the performance of the PANArray™ HPV test and DNA chip test for genotyping of human papillomavirus in cervical swabs. BioChip Journal. 2010;4(3): 167–172. doi: 10.1007/s13206-010-4301-y

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden