Isotopic compositions of ground ice in near-surface permafrost in relation to vegetation and microtopography at the Taiga–Tundra boundary in the Indigirka River lowlands, northeastern Siberia

Autoři: Shinya Takano aff001;  Atsuko Sugimoto aff002;  Shunsuke Tei aff002;  Maochang Liang aff001;  Ryo Shingubara aff001;  Tomoki Morozumi aff001;  Trofim C. Maximov aff005
Působiště autorů: Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan aff001;  Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan aff002;  Arctic Research Center, Hokkaido University, Sapporo, Japan aff003;  Global Station for Arctic Research, Hokkaido University, Sapporo, Japan aff004;  North-Eastern Federal University in Yakutsk, Yakutsk, Sakha, Russia aff005;  Institute for Biological Problems of Cryolithozone, Siberian Branch of the Russian Academy of Sciences, Yakutsk, Sakha, Russia aff006
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article


The warming trend in the Arctic region is expected to cause drastic changes including permafrost degradation and vegetation shifts. We investigated the spatial distribution of ice content and stable isotopic compositions of water in near-surface permafrost down to a depth of 1 m in the Indigirka River lowlands of northeastern Siberia to examine how the permafrost conditions control vegetation and microtopography in the Taiga–Tundra boundary ecosystem. The gravimetric water content (GWC) in the frozen soil layer was significantly higher at microtopographically high elevations with growing larch trees (i.e., tree mounds) than at low elevations with wetland vegetation (i.e., wet areas). The observed ground ice (ice-rich layer) with a high GWC in the tree mounds suggests that the relatively elevated microtopography of the land surface, which was formed by frost heave, strongly affects the survival of larch trees. The isotopic composition of the ground ice indicated that equilibrium isotopic fractionation occurred during ice segregation at the tree mounds, which implies that the ice formed with sufficient time for the migration of unfrozen soil water to the freezing front. In contrast, the isotopic data for the wet areas indicated that rapid freezing occurred under relatively non-equilibrium conditions, implying that there was insufficient time for ice segregation to occur. The freezing rate of the tree mounds was slower than that of the wet areas due to the difference of such as soil moisture and snow cover depends on vegetation and microtopography. These results indicate that future changes in snow cover, soil moisture, and organic layer, which control underground thermal conductivity, will have significant impacts on the freezing environment of the ground ice at the Taiga–Tundra boundary in northeastern Siberia. Such changes in the freezing environment will then affect vegetation due to changes in the microtopography of the ground surface.

Klíčová slova:

Surface water – Thermal conductivity – Trees – Fractionation – Ice cores – Snow – Delta ecosystems – Isotopes


1. Zhang T, Barry RG, Knowles K, Ling F, Armstrong RL. Distribution of seasonally and perennially frozen ground in the Northern Hemisphere. Permafrost. 2003; 1289–1294.

2. McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo LD, Hayes DJ, et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr. 2009; 79(4): 523–555.

3. Serreze MC, Barry RG. Processes and impacts of Arctic amplification: A research synthesis. Glob Planet Change. 2011; 77(1–2): 85–96.

4. Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, et al. Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, et al. (eds.), Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2007; 337–383.

5. Tei S, Sugimoto A, Yonenobu H, Matsuura Y, Osawa A, Sato H, et al. Tree-ring analysis and modeling approaches yield contrary response of circumboreal forest productivity to climate change. Glob Chang Biol. 2017; 23(12): 5179–5188. doi: 10.1111/gcb.13780 28585765

6. Tei S, Sugimoto A. Time lag and negative responses of forest greenness and tree growth to warming over circumboreal forests. Glob Chang Biol. 2018; 24(9): 4225–4237. doi: 10.1111/gcb.14135 29569800

7. Tchebakova NM, Parfenova E, Soja AJ. The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate. Environ Res Lett. 2009; 4(4).

8. Frost GV, Epstein HE. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Glob Change Biol. 2014; 20(4): 1264–1277.

9. Ranson KJ, Montesano PM, Nelson R. Object-based mapping of the circumpolar taiga-tundra ecotone with MODIS tree cover. Remote Sens Environ. 2011; 115(12): 3670–3680.

10. Kravtsova VI, Loshkareva AR. Dynamics of vegetation in the tundra-taiga ecotone on the Kola Peninsula depending on climate fluctuations. Russ J Ecol. 2013; 44(4): 303–311.

11. Jorgenson MT, Racine CH, Walters JC, Osterkamp TE. Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Clim Change. 2001; 48(4): 551–579.

12. Boch MS. Bolota tundrovoi zony Sibiri (printsipy tipologii). In Tipy bolot SSSR i printsipy ikh klassifikatsii, Abramova TG (ed.). Akademiya Nauk SSSR: Leningrad. 1974; 146–154.

13. Minke M, Donner N, Karpov NS, de Klerk P, Joosten H. Distribution, diversity, development and dynamics of polygon mires: examples from NE Yakutia (NE Siberia). Peatlands Int. 2007; 1: 36–40.

14. Chernov Y, Matveyeva N. Arctic ecosystems in Russia. In: Wielgolaski F (ed.). Ecosystems of the World. Amsterdam: Elsevier. 1997; 361–507.

15. Minke M, Donner N, Karpov N, de Klerk P, Joosten H. Patterns in Vegetation Composition, Surface Height and Thaw Depth in Polygon Mires in the Yakutian Arctic (NE Siberia): A Microtopographical Characterisation of the Active Layer. Permafr Periglac Process. 2009; 20(4): 357–368.

16. Wolter J, Lantuit H, Fritz M, Macias-Fauria M, Myers-Smith I, Herzschuh U. Vegetation composition and shrub extent on the Yukon coast, Canada, are strongly linked to ice-wedge polygon degradation. Polar Res. 2016; 35. doi: 10.3402/polar.v35.27105

17. Zibulski R, Herzschuh U, Pestryakova LA. Vegetation patterns along micro-relief and vegetation type transects in polygonal landscapes of the Siberian Arctic. J Veg Sci. 2016; 27(2): 377–386.


19. Engstrom R, Hope A, Kwon H, Stow D, Zamolodchikov D. Spatial distribution of near surface soil moisture and its relationship to microtopography in the Alaskan Arctic coastal plain. Nordic Hydrology. 2005; 36(3): 219–234.

20. Godin E, Fortier D, Levesque E. Nonlinear thermal and moisture response of ice-wedge polygons to permafrost disturbance increases heterogeneity of high Arctic wetland. Biogeosciences. 2016; 13(5): 1439–1452.

21. Kokelj SV, Burn CR. Near-surface ground ice in sediments of the Mackenzie Delta, Northwest Territories, Canada. Permafr Periglac Process. 2005; 16: 291–303.

22. Kokelj SV, Burn CR. Ground ice and soluable cations in near-surface permafrost, Inuvik, Northwest Territories, Canada. Permafr Periglac Process. 2003; 14: 275–289.

23. Kokelj SV, Burn CR, Tarnocai C. The structure and dynamics of earth hummocks in the subarctic forest near Inuvik, Northwest Territories, Canada. Arct Antarct Alp Res. 2007; 39: 99–109.[99:TSADOE]2.0.CO;2

24. Burn CR, Kokelj SV. The environment and permafrost of the Mackenzie Delta area, Permafr Periglac Process. 2009; 20: 83–105.

25. Morse PD, Burn CR. Field observations of syngenetic ice wedge polygons, outer Mackenzie Delta, western Arctic coast, Canada. J Geophys Res Earth Surf. 2013; 118: 1320–1332.

26. Van Everdingen R (ed.). Multi-language Glossary of Permafrost and Related Ground-ice Terms. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder. 1998 (Rev. May 2005).

27. Shur Y, Hinkel KM, Nelson FE. The transient layer: Implications for geocryology and climate-change science. Permafr Periglac Process. 2005; 16(1): 5–17.

28. French H, Shur Y. The principles of cryostratigraphy. Earth-Sci Rev. 2010; 101(3–4): 190–206.

29. Matsumoto J, Ohkubo T. Experimental study on heat transfer characteristics of soils. Proceedings of the Japan society of civil engineers. 1977; 257: 43–50.

30. Hinzman LD, Kane DL, Gieck RE, Everett KR. HYDROLOGIC AND THERMAL-PROPERTIES OF THE ACTIVE LAYER IN THE ALASKAN ARCTIC. Cold Reg Sci Technol. 1991; 19(2): 95–110.

31. Zhang TJ. Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev Geophys. 2005; 43(4).

32. Stuiver M, Yang IC, Denton GH. PERMAFROST OXYGEN ISOTOPE RATIOS AND CHRONOLOGY OF 3 CORES FROM ANTARCTICA. Nature. 1976; 261(5561): 547–550.

33. Mackay JR. Oxygen isotope variations in permafrost, Tuktoyaktuk Peninsula area, Northwest Territories. Curr Res Part B, Geol Surv Can. 1983; Paper 83–1B; 67–74.

34. Craig H. ISOTOPIC VARIATIONS IN METEORIC WATERS. Science. 1961; 133(346): 1702–1703.

35. Dansgaard W. STABLE ISOTOPES IN PRECIPITATION. Tellus. 1964; 16(4): 436–468.

36. Craig H, Gordon LI. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In: Tongiorgi E (ed.). Stable Isotopes in Oceanographic Studies and Paleotemperatures. Lab. di Geol. Necl., Pisa, Italy. 1965; 9–130.


38. Suzuoki T, Kjmura T. D/H and 18O/16O fractionation in ice-water system. J Mass Spectrom Soc Jpn. 1973; 21: 229–233.

39. Lacelle D. On the delta O-18, delta D and D-excess Relations in Meteoric Precipitation and During Equilibrium Freezing: Theoretical Approach and Field Examples. Permafr Periglac Process. 2011; 22(1): 13–25.


41. Michel FA. Isotope Characterisation of Ground Ice in Northern Canada. Permafr Periglac Process. 2011; 22(1): 3–12.

42. Meyer H, Dereviagin A, Siegert C, Hubberten HW. Palaeoclimate studies on Bykovsky Peninsula, North Siberia—hydrogen and oxygen isotopes in ground ice. Polarforschung. 2002a; 70: 37–51.

43. Meyer H, Dereviagin A, Siegert C, Schirrmeister L, Hubberten HW. Palaeoclimate reconstruction on Big Lyakhovsky Island, North Siberia—Hydrogen and oxygen isotopes in ice wedges. Permafr Periglac Process. 2002b; 13(2): 91–105.

44. Meyer H, Opel T, Laepple T, Dereviagin AY, Hoffmann K, Werner M. Long-term winter warming trend in the Siberian Arctic during the mid-to late Holocene. Nat Geosci. 2015; 8(2): 122–125.

45. Opel T, Dereviagin AY, Meyer H, Schirrmeister L, Wetterich S. Palaeoclimatic Information from Stable Water Isotopes of Holocene Ice Wedges on the Dmitrii Laptev Strait, Northeast Siberia, Russia. Permafr Periglac Process. 2011; 22(1): 84–100.

46. Opel T, Laepple T, Meyer H, Dereviagin AY, Wetterich S. Northeast Siberian ice wedges confirm Arctic winter warming over the past two millennia. Holocene. 2017; 27(11): 1789–1796.

47. Wetterich S, Rudaya N, Tumskoy V, Andreev AA, Opel T, Schirrmeister L, et al. Last Glacial Maximum records in permafrost of the East Siberian Arctic. Quat Sci Rev. 2011; 30(21–22): 3139–3151.

48. Wetterich S, Tumskoy V, Rudaya N, Andreev AA, Opel T, Meyer H, et al. Ice Complex formation in arctic East Siberia during the MIS3 Interstadial. Quat Sci Rev. 2014; 84: 39–55.

49. Wetterich S, Tumskoy V, Rudaya N, Kuznetsov V, Maksimov F, Opel T, et al. Ice Complex permafrost of MIS5 age in the Dmitry Laptev Strait coastal region (East Siberian Arctic). Quat Sci Rev. 2016; 147: 298–311.

50. Iwahana G, Takano S, Petrov RE, Tei S, Shingubara R, Maximov TC, et al. Geocryological characteristics of the upper permafrost in a tundra-forest transition of the Indigirka River Valley, Russia. Polar Sci. 2014; 8(2): 96–113.

51. Vasil'chuk Y, Vasil'chuk A. Spatial distribution of mean winter air temperatures in Siberian permafrost at 20-18ka BP using oxygen isotope data. Boreas. 2014; 43(3): 678–687.

52. Streletskaya ID, Vasiliev AA, Oblogov GE, Tokarev IV. Reconstruction of paleoclimate of Russian arctic in Late Pleistocene-Holocene on the basis of isotope study of ice wedges. Earth’s Cryosphere. 2015; 19(2): 98–106.

53. Meyer H, Schirrmeister L, Yoshikawa K, Opel T, Wetterich S, Hubberten HW, et al. Permafrost evidence for severe winter cooling during the Younger Dryas in northern Alaska. Geophys Res Lett. 2010; 37.

54. Fritz M, Wetterich S, Schirrmeister L, Meyer H, Lantuit H, Preusser F, et al. Eastern Beringia and beyond: Late Wisconsinan and Holocene landscape dynamics along the Yukon Coastal Plain, Canada. Palaeogeogr Palaeoclimatol Palaeoecol. 2012; 319: 28–45.

55. Yoshikawa K, Lawson D, Sharkhuu N. Stable isotope composition of ice core in open- and closed-system pingos. K.M. Hinkel (Ed.), Permafrost, Tenth International Conference, Proceedings, Salekhard, vol. 1, The Northern Publisher, Russia. 2012; 473–478.

56. Yoshikawa K, Natsagdorj S, Sharkhuu A. Groundwater Hydrology and Stable Isotope Analysis of an Open-System Pingo in Northwestern Mongolia. Permafr Periglac Process. 2013; 24(3): 175–183.

57. Lachniet MS, Lawson DE, Sloat AR. Revised C-14 dating of ice wedge growth in interior Alaska (USA) to MIS 2 reveals cold paleoclimate and carbon recycling in ancient permafrost terrain. Quat Res. 2012; 78(2): 217–225.

58. Porter TJ, Froese DG, Feakins SJ, Bindeman IN, Mahony ME, Pautler BG, et al. Multiple water isotope proxy reconstruction of extremely low last glacial temperatures in Eastern Beringia (Western Arctic). Quat Sci Rev. 2016; 137: 113–125.

59. Schirrmeister L, Meyer H, Andreev A, Wetterich S, Kienast F, Bobrov A, et al. Late Quaternary paleoenvironmental records from the Chatanika River valley near Fairbanks (Alaska). Quat Sci Rev. 2016; 147: 259–278.

60. Yabuki H, Park H, Kawamoto H, Suzuki R, Razuvaev VN, Bulygina ON, Ohata T. Baseline Meteorological Data in Siberia (BMDS) Version 5.0. RIGC, JAMSTEC, Yokosuka, Japan, distributed by CrDAP, Digital Media. 2011.

61. Vaganov E, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature. 1999; 400: 149–151.

62. Tei S, Sugimoto A, Liang M, Yonenobu H, Matsuura Y, Oosawa A, et al. Radial growth and physiological response of coniferous trees to Arctic amplification. J. Geophys. Res. 2017; 122: 2786–2803.

63. Khitun OV, Koroleva TM, Chinenko SV, Petrovsky VV, Pospelova EB, Pospelov IN, et al. Applications of local floras for floristic subdivision and monitoring vascular plant diversity in the Russian Arctic. Arct Sci. 2016; 2: 103–126.

64. Liang MC, Sugimoto A, Tei S, Bragin IV, Takano S, Morozumi T, et al. Importance of soil moisture and N availability to larch growth and distribution in the Arctic taiga-tundra boundary ecosystem, northeastern Siberia. Polar Sci. 2014; 8(4): 327–341.

65. Shingubara R, Sugimoto A, Murase J, Iwahana G, Tei S, Liang MC, et al. Multi-year effect of wetting on CH4 flux at taiga-tundra boundary in northeastern Siberia deduced from stable isotope ratios of CH4. Biogeosciences. 2019; 16(3): 755–768.

66. Morozumi T, Shingubara R, Suzuki R, Kobayashi H, Tei S, Takano S, et al. Estimating methane emissions using 1 vegetation mapping in the taiga-tundra boundary of a north-eastern Siberian lowland. Tellus B Chem Phys Meteorol. 2019; 71(1): 1–17.

67. Fan R, Morozumi T, Maximov TC, Sugimoto A. Effect of floods on the delta C-13 values in plant leaves: a study of willows in Northeastern Siberia. PeerJ. 2018; 6.

68. Kendall C, McDonnell JJ (eds.). Isotope Tracers in Catchment Hydrology. Amsterdam: Elsevier. 1998.

69. Sidorchuk AY, Panin AV, Borisova OK, Elias SA, Syvistki JP. Channel morphology and river flow in the northern Russian Plain in the Late Glacial and Holocene. Int J Earth Sci. 2000; 89: 541–549.

70. Blok D, Heijmans M, Schaepman-Strub G, Kononov AV, Maximov TC, Berendse F. Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Glob Chang Biol. 2010; 16(4): 1296–1305.|

71. Cheng G. The mechanism of repeated-segregation for the formation of thick-layered ground ice. Cold Reg Sci and Technol. 1983; 8: 57–66.


73. Fritz M, Wetterich S, Meyer H, Schirrmeister L, Lantuit H, Pollard WH. Origin and Characteristics of Massive Ground Ice on Herschel Island (Western Canadian Arctic) as revealed by Stable Water Isotope and Hydrochemical Signatures. Permafr Periglac Process. 2011; 22(1): 26–38.

74. Lacelle D, Fontaine M, Forest AP, Kokelj S. High-resolution stable water isotopes as tracers of thaw unconformities in permafrost: A case study from western Arctic Canada. Chem Geol. 2014; 368: 85–96.

75. Essery R, Pomeroy J. Vegetation and topographic control of wind-blown snow distributions in distributed and aggregated simulations for an Arctic tundra basin. J Hydrometeorol. 2004; 5(5): 735–744.<0735:VATCOW>2.0.CO;2

76. Hirashima H, Ohata T, Kodama Y, Yabuki H, Sato N, Georgiadi A. Nonuniform distribution of tundra snow cover in eastern Siberia. J Hydrometeorol. 2004; 5(3): 373–389.<0373:NDOTSC>2.0.CO;2

77. Raisanen J. Warmer climate: less or more snow? Clim Dyn. 2008; 30(2–3): 307–319.

78. Ise T, Dunn AL, Wofsy SC, Moorcroft PR. High sensitivity of peat decomposition to climate change through water-table feedback. Nat Geosci. 2008; 1(11): 763–766.

79. Allison SD, Wallenstein MD, Bradford MA. Soil-carbon response to warming dependent on microbial physiology. Nat Geosci. 2010; 3(5): 336–340.

80. Callaghan TV, Johansson M, Brown RD, Groisman PY, Labba N, Radionov V, et al. The Changing Face of Arctic Snow Cover: A Synthesis of Observed and Projected Changes. Ambio. 2011; 40: 17–31.

81. Bring A, Fedorova I, Dibike Y, Hinzman L, Mard J, Mernild SH, et al. Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges. J Geophys Res Biogeosci. 2016; 121(3): 621–649.

82. Romanovsky VE, Drozdov DS, Oberman NG, Malkova GV, Kholodov AL, Marchenko SS, et al. Thermal State of Permafrost in Russia. Permafr Periglac Process. 2010; 21(2): 136–155.

83. Romanovsky VE, Sazonova TS, Balobaev VT, Shender NI, Sergueev DO. Past and recent changes in air and permafrost temperatures in eastern Siberia. Glob Planet Change. 2007; 56(3–4): 399–413.

84. Koven CD, Ringeval B, Friedlingstein P, Ciais P, Cadule P, Khvorostyanov D, et al. Permafrost carbon-climate feedbacks accelerate global warming. Proc Nati Acad Sci USA. 2011; 108(36): 14769–14774.

85. Lawrence DM, Slater AG, Swenson SC. Simulation of Present-Day and Future Permafrost and Seasonally Frozen Ground Conditions in CCSM4. J Clim. 2012; 25(7): 2207–2225.

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden