#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Extended-wavelength diffuse reflectance spectroscopy with a machine-learning method for in vivo tissue classification


Autoři: Ulf Dahlstrand aff001;  Rafi Sheikh aff001;  Cu Dybelius Ansson aff001;  Khashayar Memarzadeh aff001;  Nina Reistad aff002;  Malin Malmsjö aff001
Působiště autorů: Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology, Lund, Sweden aff001;  Department of Atomic Physics, Lund University, Lund, Sweden aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0223682

Souhrn

Objectives

An extended-wavelength diffuse reflectance spectroscopy (EWDRS) technique was evaluated for its ability to differentiate between and classify different skin and tissue types in an in vivo pig model.

Materials and methods

EWDRS recordings (450–1550 nm) were made on skin with different degrees of pigmentation as well as on the pig snout and tongue. The recordings were used to train a support vector machine to identify and classify the different skin and tissue types.

Results

The resulting EWDRS curves for each skin and tissue type had a unique profile. The support vector machine was able to classify each skin and tissue type with an overall accuracy of 98.2%. The sensitivity and specificity were between 96.4 and 100.0% for all skin and tissue types.

Conclusion

EWDRS can be used in vivo to differentiate between different skin and tissue types with good accuracy. Further development of the technique may potentially lead to a novel diagnostic tool for e.g. non-invasive tumor margin delineation.

Klíčová slova:

Cancer detection and diagnosis – Histology – Light – Melanin – Pig models – Tongue – Skin tissue – Skin tumors


Zdroje

1. Kimyai-Asadi A, Katz T, Goldberg LH, Ayala GB, Wang SQ, Vujevich JJ, et al. Margin involvement after the excision of melanoma in situ: the need for complete en face examination of the surgical margins. Dermatologic surgery: official publication for American Society for Dermatologic Surgery [et al]. 2007;33(12):1434–9; discussion 9–41. doi: 10.1111/j.1524-4725.2007.33313.x 18076608.

2. Deinlein T, Richtig G, Schwab C, Scarfi F, Arzberger E, Wolf I, et al. The use of dermatoscopy in diagnosis and therapy of nonmelanocytic skin cancer. J Dtsch Dermatol Ges. 2016;14(2):144–51. Epub 2016/01/29. doi: 10.1111/ddg.12903 26819109.

3. Errichetti E, Stinco G. Dermoscopy in General Dermatology: A Practical Overview. Dermatology and therapy. 2016;6(4):471–507. Epub 2016/09/11. doi: 10.1007/s13555-016-0141-6 27613297; PubMed Central PMCID: PMC5120630.

4. Vestergaard ME, Macaskill P, Holt PE, Menzies SW. Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in a clinical setting. The British journal of dermatology. 2008;159(3):669–76. Epub 2008/07/12. doi: 10.1111/j.1365-2133.2008.08713.x 18616769.

5. Xiong YD, Ma S, Li X, Zhong X, Duan C, Chen Q. A meta-analysis of reflectance confocal microscopy for the diagnosis of malignant skin tumours. J Eur Acad Dermatol Venereol. 2016;30(8):1295–302. Epub 2016/05/28. doi: 10.1111/jdv.13712 27230832.

6. Hernandez-Ibanez C, Blazquez-Sanchez N, Aguilar-Bernier M, Funez-Liebana R, Rivas-Ruiz F, de Troya-Martin M. Usefulness of High-Frequency Ultrasound in the Classification of Histologic Subtypes of Primary Basal Cell Carcinoma. Actas dermo-sifiliograficas. 2017;108(1):42–51. Epub 2016/10/11. doi: 10.1016/j.ad.2016.08.002 27720188.

7. Pelosini L, Smith HB, Schofield JB, Meeckings A, Dithal A, Khandwala M. A novel imaging approach to periocular basal cell carcinoma: in vivo optical coherence tomography and histological correlates. Eye (London, England). 2015;29(8):1092–8. Epub 2015/06/20. doi: 10.1038/eye.2015.97 26088676; PubMed Central PMCID: PMC4541363.

8. Bydlon TM, Nachabe R, Ramanujam N, Sterenborg HJ, Hendriks BH. Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption. Journal of biophotonics. 2015;8(1–2):9–24. Epub 2014/04/25. doi: 10.1002/jbio.201300198 24760790.

9. Sheikh R, Dahlstrand U, Memarzadeh K, Blohme J, Reistad N, Malmsjo M. Optimal Epinephrine Concentration and Time Delay to Minimize Perfusion in Eyelid Surgery: Measured by Laser-Based Methods and a Novel Form of Extended-Wavelength Diffuse Reflectance Spectroscopy. Ophthalmic plastic and reconstructive surgery. 2017. Epub 2017/02/22. doi: 10.1097/iop.0000000000000883 28221297.

10. Reistad N, Nilsson J, Timmermand OV, Sturesson C, Andersson-Engels S. Diffuse reflectance spectroscopy of liver tissue: SPIE; 2015.

11. Dahlstrand U, Sheikh R, Nguyen CD, Hult J, Reistad N, Malmsjo M. Identification of tumor margins using diffuse reflectance spectroscopy with an extended-wavelength spectrum in a porcine model. Skin Res Technol. 2018;24(4):667–71. Epub 2018/05/19. doi: 10.1111/srt.12583 29774600.

12. Nachabe R, Hendriks BH, van der Voort M, Desjardins AE, Sterenborg HJ. Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm. Biomedical optics express. 2010;1(5):1432–42. Epub 2011/01/25. doi: 10.1364/BOE.1.001432 21258560; PubMed Central PMCID: PMC3018130.

13. Reistad N, Nilsson J, Vilhelmsson Timmermand O, Sturesson C, Andersson-Engels S, editors. Diffuse reflectance spectroscopy of liver tissue2015.

14. Nilsson JH, Reistad N, Brange H, Oberg CF, Sturesson C. Diffuse Reflectance Spectroscopy for Surface Measurement of Liver Pathology. European surgical research Europaische chirurgische Forschung Recherches chirurgicales europeennes. 2017;58(1–2):40–50. Epub 2016/09/23. doi: 10.1159/000449378 27658312.

15. Reistad N, Nilsson JH, Bergenfeldt M, Rissler P, Sturesson C. Intraoperative liver steatosis characterization using diffuse reflectance spectroscopy. HPB: the official journal of the International Hepato Pancreato Biliary Association. 2019;21(2):175–80. Epub 2018/07/28. doi: 10.1016/j.hpb.2018.06.1809 30049643.

16. Winter GD. A Study of wound healing in the domestic pig: University of London; 1966.

17. Hartwell SW. A mechanism of healing in human wounds. Springfield, IL: Charles Thomas; 1955.

18. Yudovsky D, Pilon L. Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance. Applied optics. 2010;49(10):1707–19. Epub 2010/04/02. doi: 10.1364/AO.49.001707 20357850.

19. Cornejo A, Rodriguez T, Steigelman M, Stephenson S, Sahar D, Cohn SM, et al. The use of visible light spectroscopy to measure tissue oxygenation in free flap reconstruction. Journal of reconstructive microsurgery. 2011;27(7):397–402. Epub 2011/07/01. doi: 10.1055/s-0031-1281521 21717398.

20. Volynskaya Z, Haka AS, Bechtel KL, Fitzmaurice M, Shenk R, Wang N, et al. Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy. Journal of biomedical optics. 2008;13(2):024012. Epub 2008/05/10. doi: 10.1117/1.2909672 18465975.

21. Wilson RH, Nadeau KP, Jaworski FB, Tromberg BJ, Durkin AJ. Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization. Journal of biomedical optics. 2015;20(3):030901. Epub 2015/03/25. doi: 10.1117/1.JBO.20.3.030901 25803186; PubMed Central PMCID: PMC4370890.

22. Wang H, Huang G. Application of support vector machine in cancer diagnosis. Medical oncology (Northwood, London, England). 2011;28 Suppl 1:S613–8. Epub 2010/09/16. doi: 10.1007/s12032-010-9663-4 20842538.

23. Bae Y, Yoo BW, Lee JC, Kim HC. Automated network analysis to measure brain effective connectivity estimated from EEG data of patients with alcoholism. Physiological measurement. 2017;38(5):759–73. Epub 2017/04/28. doi: 10.1088/1361-6579/aa6b4c 28448272.

24. Bak N, Ebdrup BH, Oranje B, Fagerlund B, Jensen MH, During SW, et al. Two subgroups of antipsychotic-naive, first-episode schizophrenia patients identified with a Gaussian mixture model on cognition and electrophysiology. Translational psychiatry. 2017;7(4):e1087. Epub 2017/04/12. doi: 10.1038/tp.2017.59 28398342; PubMed Central PMCID: PMC5416700.

25. Berikol GB, Yildiz O, Ozcan IT. Diagnosis of Acute Coronary Syndrome with a Support Vector Machine. Journal of medical systems. 2016;40(4):84. Epub 2016/01/28. doi: 10.1007/s10916-016-0432-6 26815338.


Článek vyšel v časopise

PLOS One


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#