Microliths in the South Asian rainforest ~45-4 ka: New insights from Fa-Hien Lena Cave, Sri Lanka

Autoři: Oshan Wedage aff001;  Andrea Picin aff001;  James Blinkhorn aff001;  Katerina Douka aff001;  Siran Deraniyagala aff005;  Nikos Kourampas aff006;  Nimal Perera aff005;  Ian Simpson aff006;  Nicole Boivin aff001;  Michael Petraglia aff001;  Patrick Roberts aff001
Působiště autorů: Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany aff001;  Department of History and Archaeology, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka aff002;  Department of Geography, Royal Holloway, University of London, London, England, United Kingdom aff003;  Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, England, United Kingdom aff004;  Department of Archaeology, Government of Sri Lanka, Colombo, Sri Lanka aff005;  Biological and Environmental Science, University of Stirling, Stirling, Scotland, United Kingdom aff006;  Centre for Open Learning, University of Edinburgh, Edinburgh, Scotland, United Kingdom aff007;  School of Social Science, The University of Queensland, Brisbane, Queensland, Australia aff008;  Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada aff009;  Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America aff010
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0222606


Microliths–small, retouched, often-backed stone tools–are often interpreted to be the product of composite tools, including projectile weapons, and efficient hunting strategies by modern humans. In Europe and Africa these lithic toolkits are linked to hunting of medium- and large-sized game found in grassland or woodland settings, or as adaptations to risky environments during periods of climatic change. Here, we report on a recently excavated lithic assemblage from the Late Pleistocene cave site of Fa-Hien Lena in the tropical evergreen rainforest of Sri Lanka. Our analyses demonstrate that Fa-Hien Lena represents the earliest microlith assemblage in South Asia (c. 48,000–45,000 cal. years BP) in firm association with evidence for the procurement of small to medium size arboreal prey and rainforest plants. Moreover, our data highlight that the lithic technology of Fa-Hien Lena changed little over the long span of human occupation (c. 48,000–45,000 cal. years BP to c. 4,000 cal. years BP) indicating a successful, stable technological adaptation to the tropics. We argue that microlith assemblages were an important part of the environmental plasticity that enabled Homo sapiens to colonise and specialise in a diversity of ecological settings during its expansion within and beyond Africa. The proliferation of diverse microlithic technologies across Eurasia c. 48–45 ka was part of a flexible human ‘toolkit’ that assisted our species’ spread into all of the world’s environments, and the development of specialised technological and cultural approaches to novel ecological situations.

Klíčová slova:

Archaeology – Crystals – Paleoanthropology – Pleistocene epoch – Raw materials – Quartz – Lithic technology – Rainforests


1. Deraniyagala SU. The Prehistory of Sri Lanka: An Ecological Perspective, 2nd ed. Colombo: Department of Archaeology; 1992.

2. Barker G, Barton H, Bird M, Daly P, Datan I, Dykes A, et al. The ‘human revolution’ in lowland tropical Southeast Asia: the antiquity and behavior of anatomically modern humans at Niah Cave (Sarawak, Borneo). J Hum Evol. 2007;52(3):243–61. doi: 10.1016/j.jhevol.2006.08.011 17161859

3. Barker G, Richards MB. Foraging-Farming Transitions in Island Southeast Asia. J Archaeol Method Th. 2013;20:256–80.

4. Summerhayes GR, Leavesley M, Fairbairn A, Mandui H, Field J, Ford A, et al. Human Adaptation and Plant Use in Highland New Guinea 49,000 to 44,000 Years Ago. Science. 2010;330(6000):78–81. doi: 10.1126/science.1193130 20929808

5. Roberts P, Perera N, Wedage O, Deraniyagala S, Perera J, Eregama S, et al. Direct evidence for human reliance on rainforest resources in late Pleistocene Sri Lanka. Science. 2015;347(6227):1246–9. doi: 10.1126/science.aaa1230 25766234

6. Roberts P, Gaffney D, Lee-Thorp J, Summerhayes G. Persistent tropical foraging in the highlands of terminal Pleistocene/Holocene New Guinea. Nature Ecology and Evolution. 2017;1:0044.

7. Roberts P, Perera N, Wedage O, Deraniyagala S, Perera J, Eregama S, et al. Fruits of the forest: Human stable isotope ecology and rainforest adaptations in Late Pleistocene and Holocene (∼36 to 3 ka) Sri Lanka. J Hum Evol. 2017;106:102–18. doi: 10.1016/j.jhevol.2017.01.015 28434535

8. Summerhayes GR, Field JH, Shaw B, Gaffney D. The archaeology of forest exploitation and change in the tropics during the Pleistocene: The case of Northern Sahul (Pleistocene New Guinea). Quatern Int. 2017;448:14–30.

9. Barham L. Central Africa and the emergence of regional identity in the Middle Pleistocene. In: Barham L, Robson-Brown K, editors. Human roots: Africa and Asia in the Middle Pleistocene. Bristol: Western Academic and Specialist Press; 2001. p. 65–80.

10. Mercader J. Forest people: The role of African rainforests in human evolution and dispersal. Evolutionary Anthropology: Issues, News, and Reviews. 2002;11(3):117–24.

11. Shipton C, Roberts P, Archer W, Armitage SJ, Bita C, Blinkhorn J, et al. 78,000-year-old record of Middle and Later Stone Age innovation in an East African tropical forest. Nature Communications. 2018;9(1):1832. doi: 10.1038/s41467-018-04057-3 29743572

12. Westaway KE, Louys J, Awe RD, Morwood MJ, Price GJ, Zhao Jx, et al. An early modern human presence in Sumatra 73,000–63,000 years ago. Nature. 2017;548:322. doi: 10.1038/nature23452 28792933

13. Gamble C. Timewalkers: the prehistory of global colonization. London: Penguin Books; 1993.

14. Boivin N, Fuller DQ, Dennell R, Allaby R, Petraglia MD. Human dispersal across diverse environments of Asia during the Upper Pleistocene. Quatern Int. 2013;300(0):32–47.

15. Hart TB, Hart JA. The ecological basis of hunter-gatherer subsistence in African rain forests: the Mbuti of Eastern Zaire. Human Ecology. 1986;(14):29–55.

16. Bailey RC, Head G, Jenike M, Owen B, Rechtman R, Zechenter E. Hunting and gathering in tropical rain forest: Is it possible? Am Anthropol. 1989;(91):59–82.

17. Ambrose SH. Paleolithic Technology and Human Evolution. Science. 2001;291(5509):1748–53. doi: 10.1126/science.1059487 11249821

18. Ambrose SH. Small Things Remembered: Origins of Early Microlithic Industries in Sub-Saharan Africa. Archeological Papers of the American Anthropological Association. 2002;12(1):9–29.

19. Shea JJ, Sisk ML. Complex projectile technology and Homo sapiens dispersal into western Eurasia. PaleoAnthropology. 2010;2010:100–22.

20. Mellars P. Going East: New Genetic and Archaeological Perspectives on the Modern Human Colonization of Eurasia. Science. 2006;313(5788):796–800. doi: 10.1126/science.1128402 16902130

21. Marean CW. The transition to foraging for dense and predictable resources and its impact on the evolution of modern humans. Philosophical Transactions of the Royal Society B: Biological Sciences. 2016;371(1698):20150239.

22. Rabett RJ, Piper PJ. The Emergence of Bone Technologies at the End of the Pleistocene in Southeast Asia: Regional and Evolutionary Implications. Camb Archaeol J. 2012;22(1):37–56.

23. Roberts P, Stewart BA. Defining the ‘generalist specialist’ niche for Pleistocene Homo sapiens. Nature Human Behaviour. 2018;2(8):542–50. doi: 10.1038/s41562-018-0394-4 31209320

24. Wijeyapala W. New light on the prehistory of Sri Lanka in the context of recent investigations of cave sites. Peradeniya: University of Peradeniya; 1997.

25. Perera N, Kourampas N, Simpson IA, Deraniyagala SU, Bulbeck D, Kamminga J, et al. People of the ancient rainforest: Late Pleistocene foragers at the Batadomba-lena rockshelter, Sri Lanka. J Hum Evol. 2011;61(3):254–69. doi: 10.1016/j.jhevol.2011.04.001 21777951

26. Wedage O, Amano N, Langley MC, Douka K, Blinkhorn J, Crowther A, et al. Specialized rainforest hunting by Homo sapiens ~45,000 years ago. Nature Communications. 2019;10(1):739. doi: 10.1038/s41467-019-08623-1 30783099

27. Kennedy KAR. God-apes and fossil men: Palaeoanthropology of South Asia. Ann Arbor: University of Michigan Press; 2000.

28. Perera N, Roberts P, Petraglia M. Bone Technology from Late Pleistocene Caves and Rockshelters of Sri Lanka. In: Langley MC, editor. Osseous Projectile Weaponry: Towards an Understanding of Pleistocene Cultural Variability. Dordrecht: Springer Netherlands; 2016. p. 173–88.

29. Mellars P, Gori KC, Carr M, Soares PA, Richards MB. Genetic and archaeological perspectives on the initial modern human colonization of southern Asia. Proceedings of the National Academy of Sciences. 2013.

30. Groucutt HS, Petraglia MD, Bailey G, Scerri EML, Parton A, Clark-Balzan L, et al. Rethinking the dispersal of Homo sapiens out of Africa. Evolutionary Anthropology: Issues, News, and Reviews. 2015;24(4):149–64.

31. Groucutt HS, Scerri EML, Lewis L, Clark-Balzan L, Blinkhorn J, Jennings RP, et al. Stone tool assemblages and models for the dispersal of Homo sapiens out of Africa. Quatern Int. 2015;382:8–30.

32. Lewis L. Early Microlithic Technologies and Behavioural Variability in Southern Africa and South Asia. Oxford: BAR; 2017.

33. Lewis L, Perera N, Petraglia M. First technological comparison of Southern African Howiesons Poort and South Asian Microlithic industries: An exploration of inter-regional variability in microlithic assemblages. Quatern Int. 2014;350:7–25.

34. Clark G. World prehistory: A new synthesis. Cambridge: Cambridge University Press; 1969.

35. Leplongeon A. Microliths in the Middle and Later Stone Age of eastern Africa: New data from Porc-Epic and Goda Buticha cave sites, Ethiopia. Quatern Int. 2014;343:100–16.

36. Elston RG, Kuhn SL. Thinking Small: Global Perspective on Microlithization. Archeological Papers of the American Anthropological Association. 2002;12(1).

37. Burdukiewicz JM. Microlithic technology in the Stone Age. Journal of the Israel Prehistoric Society. 2005:337–51.

38. Clark JD. The microlithic industries of Africa: their antiquity and possible economic implications. In: Misra VN, Bellwood P, editors. Recent Advances in Indo-Pacific Prehistory Proceedings of the International Symposium Held at Poona, December 19–21, 1978. New Delhi: Oxford & IBH Publishing,; 1985. p. 95–103.

39. Clarkson C, Hiscock P, Mackay A, Shipton C. Small, Sharp, and Standardized: Global Convergence in Backed-Microlith Technology. In: O'Brien MJ, Buchanan BW, Eren MI, editors. Convergent Evolution in Stone-Tool Technology. Cambridge: MIT Press; 2018. p. 175–200.

40. Pargeter J. Lithic miniaturization in late Pleistocene southern Africa. Journal of Archaeological Science: Reports. 2016;10:221–36.

41. Pargeter J, Shea JJ. Going big versus going small: Lithic miniaturization in hominin lithic technology. Evolutionary Anthropology: Issues, News, and Reviews. 2019;28(2):72–85.

42. Callahan E. The Basics of Biface Knapping in the Eastern Fluted Point Tradition: A Manual for Flintknappers and Lithic Analysts. New York: Eastern States Archaeological Federation; 1990

43. Flenniken JJ. Replicative Systems Analysis: A Model Applied to Vein Quartz Artifacts from the Hoko River Site. Pullman: Washington State University Laboratory of Anthropology, Reports of Investigations, No. 59; 1981.

44. Petraglia M, Clarkson C, Boivin N, Haslam M, Korisettar R, Chaubey G, et al. Population increase and environmental deterioration correspond with microlithic innovations in South Asia ca. 35,000 years ago. Proceedings of the National Academy of Sciences 2009;(106):12261–6.

45. Sankalia HD. The prehistory and protohistory of India and Pakistan. Bombay: University of Bombay; 1962.

46. Perera HN. Prehistoric Sri Lanka: Late Pleistocene Rockshelters and an Open-air Site. Oxford: Archaeopress; 2010

47. Sali S. The Upper Palaeolithic and Mesolithic Cultures of Maharashtra. Pune1989.

48. Clarkson C, Jones SC, Harris C. Continuity and change in the lithic industries of the Jurreru Valley, India, before and after the Toba eruption. Quatern Int. 2012;(258):165–79.

49. Clarkson C, Petraglia M, Korisettar R, Haslam M, Boivin N, Crowther A, et al. The oldest and longest enduring microlithic sequence in India: 35 000 years of modern human occupation and change at the Jwalapuram Locality 9 rockshelter. Antiquity. 2009;(83 (320)):326–48.

50. Mishra S, Chauhan N, Singhvi AK. Continuity of Microblade Technology in the Indian Subcontinent Since 45 ka: Implications for the Dispersal of Modern Humans. PLoS ONE. 2013;8(7):e69280. doi: 10.1371/journal.pone.0069280 23840912

51. Blinkhorn J. Buddha Pushkar revisited: Technological variability in Late Palaeolithic stone tools at the Thar Desert margin, India. Journal of Archaeological Science: Reports. 2018;(20):168–82.

52. Clarkson C, Petraglia M, Harris C, Shipton C, Norman K. The South Asian Microlithic: Homo sapiens Dispersal or Adaptive Response? In: Robinson E, Sellet F, editors. Lithic Technological Organization and Paleoenvironmental ChangeStudies in Human Ecology and Adaptation, vol 9. Cham: Springer; 2018. p. 37–61. https://doi.org/10.1007/978-3-319-64407-3_3.

53. Basak B, Srivastava P, Dasgupta S, Kumar A, Rajaguru SN. Earliest dates and implications of Microlithic industries of Late Pleistocene from Mahadebbera and Kana, Purulia district, West Bengal. Current Science. 2014:1167–71.

54. Kourampas N, Simpson IA, Perera N, Deraniyagala SU, Wijeyapala WH. Rockshelter sedimentation in a dynamic tropical landscape: Late Pleistocene–Early Holocene archaeological deposits in Kitulgala Beli-lena, southwestern Sri Lanka. Geoarchaeology. 2009;24(6):677–714.

55. Misra VN. Prehistoric human colonization of India. Journal of Biosciences. 2001;(26):491–531.

56. McBrearty S, Brooks AS. The revolution that wasn't: a new interpretation of the origin of modern human behavior. J Hum Evol. 2000;39(5):453–563. doi: 10.1006/jhev.2000.0435 11102266

57. Mellars P. Why did modern human populations disperse from Africa 60,000 years ago? A new model. Proceedings of the National Academy of Sciences. 2006;(103):9381.

58. Mellars P. The impossible coincidence. A single‐species model for the origins of modern human behavior in Europe. Evolutionary Anthropology: Issues, News, and Reviews. 2005;(14):12–27.

59. Schiffels S, Durbin R. Inferring human population size and separation history from multiple genome sequences. Nature Genetics. 2014;46:919. doi: 10.1038/ng.3015 24952747

60. Bae CJ, Douka K, Petraglia MD. On the origin of modern humans: Asian perspectives. Science. 2017;358(6368):eaai9067. doi: 10.1126/science.aai9067 29217544

61. Moroni A, Ronchitelli A, Arrighi S, Aureli D, Bailey SE, Boscato P, et al. Grotta del Cavallo (Apulia–Southern Italy). The Uluzzian in the mirror. Journal of Anthropological Sciences. 2018;96:1–36. doi: 10.4436/JASS.96016

62. Villa P, Pollarolo L, Conforti J, Marra F, Biagioni C, Degano I, et al. From Neandertals to modern humans: New data on the Uluzzian. PloS one. 2018;13(5):e0196786. doi: 10.1371/journal.pone.0196786 29742147

63. Peresani M, Bertola S, Delpiano D, Benazzi S, Romandini M. The Uluzzian in the north of Italy: insights around the new evidence at Riparo Broion. Archaeol Anthropol Sci. 2019;11(7):3503–36.

64. Powell A, Shennan SJ, Thomas MG. Late Pleistocene demography and the appearance of modern human behavior. Science. 2009;324:1298–301. doi: 10.1126/science.1170165 19498164

65. Wedage MCO. Comparative Study of Strathigraphic Analysis of Fa-Hien Cave Excavation in 1986 and 2009. Pune: Deccan College Pune; 2011.

66. Cooray PG. An introduction to the geology of Sri Lanka (Ceylon). Colombo: National museums of Sri Lanka publication. Vol.38; 1984.

67. Ramsey CB. Bayesian analysis of radiocarbon dates. Radiocarbon. 2009;51(1):337–60.

68. Bronk Ramsey C, Lee S. Recent and planned developments of the program OxCal. Radiocarbon. 2013;55:720–30.

69. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon. 2013;55(4):1869–87.

70. Roberts P, Boivin N, Petraglia M. The Sri Lankan ‘Microlithic’ Tradition c. 38,000 to 3,000 Years Ago: Tropical Technologies and Adaptations of Homo sapiens at the Southern Edge of Asia. Journal of World Prehistory. 2015;28(2):69–112.

71. Villa P, Soriano S, Tsanova T, Degano I, Higham TFG, d’Errico F, et al. Border Cave and the beginning of the Later Stone Age in South Africa. Proceedings of the National Academy of Sciences. 2012.

72. de la Peña P, Wadley L. Technological variability at Sibudu Cave: The end of Howiesons Poort and reduced mobility strategies after 62,000 years ago. PLOS ONE. 2017;12(10):e0185845. doi: 10.1371/journal.pone.0185845 28982148

73. de la Peña P. The interpretation of bipolar knapping in African Stone Age studies. Curr Anthropol. 2015;56(6):911–23.

74. de la Peña P, Taipale N, Wadley L, Rots V. A techno-functional perspective on quartz micro-notches in Sibudu's Howiesons Poort indicates the use of barbs in hunting technology. J Archaeol Sci. 2018;93:166–95.

75. Pelegrin J, Karlin C, Bodu P. "Chaînes Opératoires": un outil pour le préhistorien. Technologie Préstorique Notes et Monographies Techniques. Paris: Editions du CNRS; 1988. p. 55–62.

76. Inizian M-L, Roche H, Tixier J. Technology of Knapped Stone. Meudon: CREP; 1992.

77. Roebroeks W. From Find Scatters to Early Hominid Behaviour. A Study of Middle Palaeolithic Riverside Settlements at Maastricht-Belvédère (The Netherlands). Analecta Praehistorica Leidensia 21. Leiden: Leiden University Press; 1988.

78. Hiscock P. Making it small in the Palaeolithic. Bipolar stoneworking, miniature artefacts and models of core recycling. World Archaeology. 2015;(47):158–69.

79. Shott MJ. On bipolar reduction and splintered pieces. North American Archaeologist. 1999;20(3):217–38.

80. Driscoll K. Understanding quartz technology in early prehistoric Ireland. Dublin: University College Dublin; 2010.

81. Pargeter J, de la Peña P. Milky Quartz Bipolar Reduction and Lithic Miniaturization: Experimental Results and Archaeological Implications. Journal of Field Archaeology. 2017;42(6):551–65. doi: 10.1080/00934690.2017.1391649

82. Knutsson K. Functional analysis. The flint assemblage a Making and using stone tools. The analysis of the lithic assemblages from Middle Neolithic sites with flint in Västerbotten, Northern Sweden AUN-11. Societas Archaeologica Upsaliensis Upsala–Uddevalla. 1988.

83. Shott MJ. Size and form in the analysis of flake debris: Review and recent approaches. J Archaeol Method Th. 1994;1(1):69–110. doi: 10.1007/bf02229424

84. Shott MJ. Chaîne Opératoire and Reduction Sequence. Lithic Technology. 2003;28(2):95–105.

85. Shott M, Tostevin G. DIVERSITY UNDER THE BIPOLAR UMBRELLA. Lithic Technology. 2015;40(4):377–84.

86. Mourre V. Les Industries en Quartz au Paléolithique. Terminologie, Méthodologie et Technologie. Paléo. 1996;8:205–23.

87. Brun-Ricalens FL. Les pièces esquillées: état des connaissances après un siècle de reconnaissance. PALEO Revue d'archéologie préhistorique. 2006;(18):95–114.

88. Hammer Ø, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 2001;4(4–9).

89. Geneste J-M. Systèmes d'approvisionnement en matières premières au Paléolithique moyen et au Paléolithique supérieur en Aquitaine. In: Otte M, editor. L'Homme de Néandertal La mutation. 8. Liège: ERAUL; 1988. p. 61–70.

90. Robert A, Soriano S, Rasse M, Stokes S, Huysecom E. First chrono-cultural reference framework for the west African Paleolithic: new data from Ounjougou, Dogon country, Mali. Journal of African Archaeology. 2003;1(2):151–69.

91. Rose JI. New evidence for the expansion of an Upper Pleistocene population out of East Africa, from the site of Station One, northern Sudan. Camb Archaeol J. 2004;14(2):205–16.

92. Soriano S, Robert A, Huysecom É. Percussion bipolaire sur enclume: choix ou contrainte? L’exemple du Paléolithique d’Ounjougou (Pays dogon, Mali). PALEO Revue d'archéologie préhistorique. 2010;(spécial):123–32.

93. Singhvi AK, Deraniyagala SU, Sengupta D. Thermoluminescence dating of Quaternary red-sand beds: a case study of coastal dunes in Sri Lanka. Earth and Planetary Science Letters. 1986;80(1):139–44.

94. Basak B, Srivastava P. Earliest Dates of Microlithic Industries (42–25 ka) from West Bengal, Eastern India: New Light on Modern Human Occupation in the Indian Subcontinent. Asian Perspectives. 2017;(56 (2)):237–59.

95. Brown KS, Marean CW, Jacobs Z, Schoville BJ, Oestmo S, Fisher EC, et al. An early and enduring advanced technology originating 71,000 years ago in South Africa. Nature. 2012;491:590. doi: 10.1038/nature11660 23135405

96. Wurz S. Technological Trends in the Middle Stone Age of South Africa between MIS 7 and MIS 3. Curr Anthropol. 2013;54(S8):S305–S19.

97. Diez-Martín F, Domínguez-Rodrigo M, Sánchez P, Mabulla AZ, Tarriño A, Barba R, et al. The Middle to Later Stone Age technological transition in East Africa. New data from Mumba Rockshelter Bed V (Tanzania) and their implications for the origin of modern human behavior. Journal of African Archaeology. 2009;7(2):147–73.

98. Brandt SA, Fisher EC, Hildebrand EA, Vogelsang R, Ambrose SH, Lesur J, et al. Early MIS 3 occupation of Mochena Borago Rockshelter, Southwest Ethiopian Highlands: implications for Late Pleistocene archaeology, paleoenvironments and modern human dispersals. Quatern Int. 2012;274:38–54.

99. Jacobs Z, Roberts RG, Galbraith RF, Deacon HJ, Grün R, Mackay A, et al. Ages for the Middle Stone Age of southern Africa: implications for human behavior and dispersal. Science. 2008;(322):733–5.

100. Jacobs Z, Roberts RG, Galbraith RF, Deacon HJ, Grün R, Mackay A, et al. Ages for the Middle Stone Age of southern Africa: implications for human behavior and dispersal. Science. 2008;(322):733–5.

101. Hublin J-J. The modern human colonization of western Eurasia: when and where? Quaternary Sci Rev. 2015;118:194–210.

102. Bergman C, Williams J, Douka K, Schyle D. The Palaeolithic Sequence of Ksar ‘Akil, Lebanon. In: Bar-Yosef O, Enzel Y, editors. Quaternary of the Levant: Environments, Climate Change, and Humans. Cambridge: Cambridge University Press; 2017. p. 267–76.

103. Kuhn SL, Zwyns N. Rethinking the initial Upper Paleolithic. Quatern Int. 2014;347:29–38.

104. Douka K, Slon V, Jacobs Z, Ramsey CB, Shunkov MV, Derevianko AP, et al. Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave. Nature. 2019;565(7741):640–4. doi: 10.1038/s41586-018-0870-z 30700871

105. Kolobova K, Krivoshapkin A, Shnaider S. Early geometric microlith technology in Central Asia. Archaeol Anthropol Sci. 2019;11(4):1407–19.

106. Bae CJ. Late Pleistocene Human Evolution in Eastern Asia: Behavioral Perspectives. Curr Anthropol. 2017;58(S17):S514–S26.

107. Wang Y. Late Pleistocene Human Migrations in China. Curr Anthropol. 2017;58(S17):S504–S13.

108. Marwick B. The Hoabinhian of Southeast Asia and its Relationship to Regional Pleistocene Lithic Technologies. In: Robinson E, Sellet F, editors. Lithic Technological Organization and Paleoenvironmental Change: Global and Diachronic Perspectives. Cham: Springer International Publishing; 2018. p. 63–78.

109. Campbell JB. New Radiocarbon Results for North Queensland Prehistory. Australian Archaeology. 1982;(14):62–6.

110. Hiscock P, Attenbrow V. Early Holocene backed artefacts from Australia. Archaeology in Oceania. 1998;33(2):49–62.

111. Slack MJ, Fullagar RLK, Field JH, Border A. New Pleistocene ages for backed artefact technology in Australia. Archaeology in Oceania. 2004;39(3):131–7.

112. Ji X, Kuman K, Clarke RJ, Forestier H, Li Y, Ma J, et al. The oldest Hoabinhian technocomplex in Asia (43.5 ka) at Xiaodong rockshelter, Yunnan Province, southwest China. Quatern Int. 2016;400:166–74.

113. Forestier H, Zeitoun V, Winayalai C, Métais C. The open-air site of Huai Hin (Northwestern Thailand): Chronological perspectives for the Hoabinhian. Comptes Rendus Palevol. 2013;12(1):45–55.

114. Sophady H, Forestier H, Zeitoun V, Puaud S, Frère S, Celiberti V, et al. Laang Spean cave (Battambang province): A tale of occupation in Cambodia from the Late Upper Pleistocene to Holocene. Quatern Int. 2016;416:162–76.

115. Zeitoun V, Forestier H, Pierret A, Chiemsisouraj C, Lorvankham M, Latthagnot A, et al. Multi-millennial occupation in northwestern Laos: Preliminary results of excavations at the Ngeubhinh Mouxeu rock-shelter. Comptes Rendus Palevol. 2012;11(4):305–13.

116. Moser J. Hoabinhian: Geographie und Chronologie eines steinzeitlichen Technocomplexes in Südostasien. Köln: Lindensoft; 2001

117. Marwick B, Clarkson C, O'Connor S, Collins S. Early modern human lithic technology from Jerimalai, East Timor. J Hum Evol. 2016;101:45–64. doi: 10.1016/j.jhevol.2016.09.004 27886810

118. Mijares AS, Détroit F, Piper P, Grün R, Bellwood P, Aubert M, et al. New evidence for a 67,000-year-old human presence at Callao Cave, Luzon, Philippines. J Hum Evol. 2010;59(1):123–32. doi: 10.1016/j.jhevol.2010.04.008 20569967

119. Lombard M, Parsons I. What happened to the human mind after the Howiesons Poort? Antiquity. 2011;(85):1433–43. https://doi.org/10.1017/S0003598X00062153.

120. Rabett RJ. Human adaptation in the Asian Palaeolithic: hominin dispersal and behaviour during the Late Quaternary. Cambridge: Cambridge University Press; 2012.

121. Henshilwood CS, d'Errico F. Homo symbolicus: the dawn of language, imagination and spirituality. Amsterdam: John Benjamins Publishing; 2011.

122. Tattersall I. An evolutionary context for the emergence of language. Language Sciences. 2014;46:199–206. https://doi.org/10.1016/j.langsci.2014.06.011.

123. Shea JJ. Behavioral Modernity—Not Again: A Reply to Porr. Curr Anthropol. 2011;52(4):583–4. doi: 10.1086/660847

Článek vyšel v časopise


2019 Číslo 10