Stated-preference research in HIV: A scoping review


Autoři: John M. Humphrey aff001;  Violet Naanyu aff002;  Katherine R. MacDonald aff004;  Kara Wools-Kaloustian aff001;  Gregory D. Zimet aff004
Působiště autorů: Department of Medicine, Indiana University, Indianapolis, Indiana, United States of America aff001;  Department of Behavioral Sciences, Moi University, Eldoret, Uasin Gishu County, Kenya aff002;  AMPATH Program, Eldoret, Uasin Gishu County, Kenya aff003;  Department of Pediatrics, Indiana University, Indianapolis, Indiana, United States of America aff004
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224566

Souhrn

Discrete choice experiments (DCE), conjoint analysis (CA), and best-worst scaling (BWS) are quantitative techniques for estimating consumer preferences for products or services. These methods are increasingly used in healthcare research, but their applications within the field of HIV research have not yet been described. The objective of this scoping review was to systematically map the extent and nature of published DCE, CA, and BWS studies in the field of HIV and identify priority areas where these methods can be used in the future. Online databases were searched to identify published HIV-related DCE, CA and BWS studies in any country and year as the primary outcome. After screening 1,496 citations, 57 studies were identified that were conducted in 26 countries from 2000–2017. The frequency of published studies increased over time and covered HIV themes relating to prevention (n = 25), counselling and testing (n = 10), service delivery (n = 10), and antiretroviral therapy (n = 12). Most studies were DCEs (63%) followed by CA (37%) and BWS (4%). The median [IQR] sample size was 288 [138–496] participants, and 74% of studies used primary qualitative data to develop attributes. Only 30% of studies were conducted in sub-Saharan Africa where the burden of HIV is highest. Moreover, few studies surveyed key populations including men who have sex with men, transgender people, pregnant and postpartum women, adolescents, and people who inject drugs. These populations represent priorities for future stated-preference research. This scoping review can help researchers, policy makers, program implementers, and health economists to better understand the various applications of stated-preference research methods in the field of HIV.

Klíčová slova:

Adolescents – Antiretroviral therapy – Health services research – HIV – HIV epidemiology – HIV prevention – Men who have sex with men – Microbicides


Zdroje

1. Clark MD, Determann D, Petrou S, Moro D, de Bekker-Grob EW. Discrete choice experiments in health economics: a review of the literature. Pharmacoeconomics. 2014;32(9):883–902. doi: 10.1007/s40273-014-0170-x 25005924

2. de Bekker-Grob EW, Ryan M, Gerard K. Discrete choice experiments in health economics: a review of the literature. Health Econ. 2012;21(2):145–72. doi: 10.1002/hec.1697 22223558

3. Lancsar E, Louviere J. Conducting discrete choice experiments to inform healthcare decision making: a user's guide. Pharmacoeconomics. 2008;26(8):661–77. doi: 10.2165/00019053-200826080-00004 18620460

4. Viney R, Lancsar E, Louviere J. Discrete choice experiments to measure consumer preferences for health and healthcare. Expert Rev Pharmacoecon Outcomes Res. 2002;2(4):319–26. doi: 10.1586/14737167.2.4.319 19807438

5. Mahieu PA, Andersson H, Beaumais O, dit Sourd RC, Hess S, Wolff FC. Stated preferences: a unique database composed of 1,657 recent published articles in journals related to agriculture, environment or health. Review of Agricultural, Food and Environmental Studies. 2017;98(3):759–84.

6. Seghieri C, Mengoni A, Nuti S. Applying discrete choice modelling in a priority setting: an investigation of public preferences for primary care models. Eur J Health Econ. 2014;15(7):773–85. doi: 10.1007/s10198-013-0542-8 24241816

7. Ryan M, Farrar S. Using conjoint analysis to elicit preferences for health care. BMJ. 2000;320(7248):1530–3. doi: 10.1136/bmj.320.7248.1530 10834905

8. Ubach C, Scott A, French F, Awramenko M, Needham G. What do hospital consultants value about their jobs? A discrete choice experiment. BMJ. 2003;326(7404):1432. doi: 10.1136/bmj.326.7404.1432 12829556

9. Wordsworth S, Skatun D, Scott A, French F. Preferences for general practice jobs: a survey of principals and sessional GPs. Br J Gen Pract. 2004;54(507):740–6. 15469673

10. Cheung KL, Wijnen BF, Hollin IL, Janssen EM, Bridges JF, Evers SM, et al. Using Best-Worst Scaling to Investigate Preferences in Health Care. Pharmacoeconomics. 2016;34(12):1195–209. doi: 10.1007/s40273-016-0429-5 27402349

11. Strauss M, George G, Lansdell E, Mantell JE, Govender K, Romo M, et al. HIV testing preferences among long distance truck drivers in Kenya: a discrete choice experiment. AIDS care. 2017;30(1):72–80. doi: 10.1080/09540121.2017.1367086 28847156

12. Ostermann J, Njau B, Brown DS, Muhlbacher A, Thielman N. Heterogeneous HIV testing preferences in an urban setting in Tanzania: results from a discrete choice experiment. PloS one. 2014;9(3):e92100. doi: 10.1371/journal.pone.0092100 24643047

13. Kruk ME, Riley PL, Palma AM, Adhikari S, Ahoua L, Arnaldo C, et al. How Can the Health System Retain Women in HIV Treatment for a Lifetime? A Discrete Choice Experiment in Ethiopia and Mozambique. PloS one. 2016;11(8):e0160764. doi: 10.1371/journal.pone.0160764 27551785

14. Miners AH, Llewellyn CD, Cooper VL, Youssef E, Pollard AJ, Lagarde M, et al. A discrete choice experiment to assess people living with HIV's (PLWHIV's) preferences for GP or HIV clinic appointments. Sex Transm Infect. 2017;93(2):105–11. doi: 10.1136/sextrans-2016-052643 27535762

15. Beusterien KM, Dziekan K, Schrader S, Flood E, Flood R, Shearer A, et al. Patient preferences among third agent HIV medications: a US and German perspective. AIDS care. 2007;19(8):982–8. doi: 10.1080/09540120701294278 17851994

16. Gazzard B, Ali S, Muhlbacher A, Ghafouri N, Maggiolo F, Golics C, et al. Patient preferences for characteristics of antiretroviral therapies: results from five European countries. J Int AIDS Soc. 2014;17(4 Suppl 3):19540. doi: 10.7448/IAS.17.4.19540 25394048

17. Terris-Prestholt F, Hanson K, MacPhail C, Vickerman P, Rees H, Watts C. How much demand for New HIV prevention technologies can we really expect? Results from a discrete choice experiment in South Africa. PloS one. 2013;8(12):e83193. doi: 10.1371/journal.pone.0083193 24386160

18. World Health Organization. Differentiated Care for HIV: A Decision Framework for Differentiated Antiretroviral Therapy Delivery for Children, Adolescents, and pregnant and breastfeeding women. Geneva; 2017. [cited 12 October 2018]. Available from: http://www.differentiatedcare.org/Portals/0/adam/Content/9ErIJtsSfUmj_Ska6BoN0Q/File/Decision%20Framework%20for%20children%20adolescents%20and%20pregnant%20and%20breastfeeding%20women.pdf

19. Barker C, Dutta A, Klein K. Can differentiated care models solve the crisis in HIV treatment financing? Analysis of prospects for 38 countries in sub-Saharan Africa. J Int AIDS Soc. 2017;20(Suppl 4):21648. doi: 10.7448/IAS.20.5.21648 28770597

20. Mangham LJ, Hanson K, McPake B. How to do (or not to do) … Designing a discrete choice experiment for application in a low-income country. Health policy and planning. 2009;24(2):151–8. doi: 10.1093/heapol/czn047 19112071

21. Preference Collaborative Review Group. Patients' preferences within randomised trials: systematic review and patient level meta-analysis. BMJ. 2008;337:a1864. doi: 10.1136/bmj.a1864 18977792

22. Carson RT, Louviere JJ. A common nomenclature for stated preference elicitation approaches. Environ Resource Econ. 2011;49(4):539–59.

23. Louviere JJ, Flynn TN, Carson RT. Discrete Choice Experiments are not Conjoint Analysis. J Choice Model. 2007;3(3):57–72.

24. Louviere JJ, Flynn TN, Marley AJ. Best worst scaling: theory, methods and applications. Cambridge University Press; Cambridge; 2015.

25. Kinsler JJ, Sayles JN, Cunningham WE, Mahajan A. Integrating patients' perspectives into integrated tuberculosis-human immunodeficiency virus health care. AIDS Care. 2013;25(11):1442–5. doi: 10.1080/09540121.2013.772283 23425325

26. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018;169(7):467–73. doi: 10.7326/M18-0850 30178033

27. The Cochrane collaboration. Cochrane handbook for systematic reviews of interventions. Hoboken (New Jersey): Wiley-Blackweill; 2008.

28. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097 19621072

29. Brown L, Lee TH, De Allegri M, Rao K, Bridges JF. Applying stated-preference methods to improve health systems in sub-Saharan Africa: a systematic review. Expert Rev Pharmacoecon Outcomes Res. 2017;17(5):441–58. doi: 10.1080/14737167.2017.1375854 28875767

30. Cunningham CE, Deal K, Chen Y. Adaptive choice-based conjoint analysis: a new patient-centered approach to the assessment of health service preferences. Patient. 2010;3(4):257–73. doi: 10.2165/11537870-000000000-00000 22273433

31. Whitty JA, Oliveira Goncalves AS. A Systematic Review Comparing the Acceptability, Validity and Concordance of Discrete Choice Experiments and Best-Worst Scaling for Eliciting Preferences in Healthcare. Patient. 2018;11(3):301–17. doi: 10.1007/s40271-017-0288-y 29177797

32. Clark MD, Szczepura A, Gumber A, Howard K, Moro D, Morton RL. Measuring trade-offs in nephrology: a systematic review of discrete choice experiments and conjoint analysis studies. Nephrol Dial Transplant. 2018;33(2):348–355. doi: 10.1093/ndt/gfw436 28158746

33. World Health Organization. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health Approach. Geneva; 2016. [cited 12 October 2018]. Available from: https://www.who.int/hiv/pub/arv/arv-2016/en/

34. National Heart, Lung, and Blood Institute (NHLBI). Study Quality Assessment Tools Bethesda, MD, 2019 [cited 2019 February 12]. Available from: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools.

35. Christofides NJ, Muirhead D, Jewkes RK, Penn-Kekana L, Conco DN. Women's experiences of and preferences for services after rape in South Africa: interview study. BMJ. 2006;332(7535):209–13. doi: 10.1136/bmj.38664.482060.55 16330476

36. Scalone L, Watson V, Ryan M, Kotsopoulos N, Patel R. Evaluation of patients' preferences for genital herpes treatment. Sex Transm Dis. 2011;38(9):802–7. doi: 10.1097/OLQ.0b013e318218702c 21844733

37. Mays RM, Zimet GD. Recommending STI vaccination to parents of adolescents: the attitudes of nurse practitioners. Sex Transm Dis. 2004;31(7):428–32. doi: 10.1097/01.olq.0000130536.71812.e5 15215699

38. Holt BY, Morwitz VG, Ngo L, Harrison PF, Whaley KJ, Pettifor A, et al. Microbicide preference among young women in California. J Womens Health. 2006;15(3):281–94.

39. Newman PA, Lee SJ, Duan N, Rudy E, Nakazono TK, Boscardin J, et al. Preventive HIV vaccine acceptability and behavioral risk compensation among a random sample of high-risk adults in Los Angeles (LA VOICES). Health Serv Res. 2009;44(6):2167–79. doi: 10.1111/j.1475-6773.2009.01039.x 19780857

40. Lee SJ, Brooks RA, Newman PA, Seiden D, Sangthong R, Duan N. HIV vaccine acceptability among immigrant Thai residents in Los Angeles: a mixed-method approach. AIDS care. 2008;20(10):1161–8. doi: 10.1080/09540120701855375 18608068

41. Tanner AE, Katzenstein JM, Zimet GD, Cox DS, Cox AD, Fortenberry JD. Vaginal microbicide preferences among midwestern urban adolescent women. J Adol Health. 2008;43(4):349–56.

42. Reese PP, Tehrani T, Lim MA, Asch DA, Blumberg EA, Simon MK, et al. Determinants of the decision to accept a kidney from a donor at increased risk for blood-borne viral infection. Clin J Am Soc Nephrol. 2010;5(5):917–23. doi: 10.2215/CJN.08251109 20338966

43. Cameron MP, Newman PA, Roungprakhon S, Scarpa R. The marginal willingness-to-pay for attributes of a hypothetical HIV vaccine. Vaccine. 2013;31(36):3712–7. doi: 10.1016/j.vaccine.2013.05.089 23747452

44. Newman PA, Roungprakhon S, Tepjan S, Yim S. Preventive HIV vaccine acceptability and behavioral risk compensation among high-risk men who have sex with men and transgenders in Thailand. Vaccine. 2010;28(4):958–64. doi: 10.1016/j.vaccine.2009.10.142 19925897

45. Eisingerich AB, Wheelock A, Gomez GB, Garnett GP, Dybul MR, Piot PK. Attitudes and acceptance of oral and parenteral HIV preexposure prophylaxis among potential user groups: a multinational study. PloS one. 2012;7(1):e28238. doi: 10.1371/journal.pone.0028238 22247757

46. Wheelock A, Eisingerich AB, Ananworanich J, Gomez GB, Hallett TB, Dybul MR, et al. Are Thai MSM willing to take PrEP for HIV prevention? An analysis of attitudes, preferences and acceptance. PloS one. 2013;8(1):e54288. doi: 10.1371/journal.pone.0054288 23342121

47. Galea JT, Kinsler JJ, Salazar X, Lee SJ, Giron M, Sayles JN, et al. Acceptability of pre-exposure prophylaxis as an HIV prevention strategy: barriers and facilitators to pre-exposure prophylaxis uptake among at-risk Peruvian populations. Int J STD AIDS. 2011;22(5):256–62. doi: 10.1258/ijsa.2009.009255 21571973

48. Kinsler JJ, Cunningham WE, Nurena CR, Nadjat-Haiem C, Grinsztejn B, Casapia M, et al. Using conjoint analysis to measure the acceptability of rectal microbicides among men who have sex with men in four South American cities. AIDS Behav. 2012;16(6):1436–47. doi: 10.1007/s10461-011-0045-5 21959986

49. Lee SJ, Newman PA, Comulada WS, Cunningham WE, Duan N. Use of conjoint analysis to assess HIV vaccine acceptability: feasibility of an innovation in the assessment of consumer health-care preferences. Int J STD AIDS. 2012;23(4):235–41. doi: 10.1258/ijsa.2011.011189 22581945

50. Bridges JF, Searle SC, Selck FW, Martinson NA. Designing family-centered male circumcision services: a conjoint analysis approach. Patient. 2012;5(2):101–11. doi: 10.2165/11592970-000000000-00000 22510052

51. Newman PA, Cameron MP, Roungprakhon S, Tepjan S, Scarpa R. Acceptability and Preferences for Hypothetical Rectal Microbicides among a Community Sample of Young Men Who Have Sex with Men and Transgender Women in Thailand: A Discrete Choice Experiment. AIDS Behav. 2016;20(11):2588–601. doi: 10.1007/s10461-015-1258-9 26696260

52. Tang EC, Galea JT, Kinsler JJ, Gonzales P, Sobieszczyk ME, Sanchez J, et al. Using conjoint analysis to determine the impact of product and user characteristics on acceptability of rectal microbicides for HIV prevention among Peruvian men who have sex with men. Sex Transm Infect. 2016;92(3):200–5. doi: 10.1136/sextrans-2015-052028 26574569

53. Quaife M, Eakle R, Cabrera Escobar MA, Vickerman P, Kilbourne-Brook M, Mvundura M, et al. Divergent Preferences for HIV Prevention: A Discrete Choice Experiment for Multipurpose HIV Prevention Products in South Africa. Med Decis Making. 2018;38(1):120–133. doi: 10.1177/0272989X17729376 28863752

54. Shrestha R, Karki P, Altice FL, Dubov O, Fraenkel L, Huedo-Medina T, et al. Measuring Acceptability and Preferences for Implementation of Pre-Exposure Prophylaxis (PrEP) Using Conjoint Analysis: An Application to Primary HIV Prevention Among High Risk Drug Users. AIDS Behav. 2018;22(4):1228–1238. doi: 10.1007/s10461-017-1851-1 28695388

55. Dubov A, Fraenkel L, Yorick R, Ogunbajo A, Altice FL. Strategies to Implement Pre-exposure Prophylaxis with Men Who Have Sex with Men in Ukraine. AIDS Behav. 2017;22(4):1100–1112.

56. Primrose RJ, Zaveri T, Bakke AJ, Ziegler GR, Moskowitz HR, Hayes JE. Drivers of Vaginal Drug Delivery System Acceptability from Internet-Based Conjoint Analysis. PloS one. 2016;11(3):e0150896. doi: 10.1371/journal.pone.0150896 26999009

57. Alcaide ML, Cook R, Chisembele M, Malupande E, Jones DL. Determinants of intravaginal practices among HIV-infected women in Zambia using conjoint analysis. Int J STD AIDS. 2016;27(6):453–61. doi: 10.1177/0956462415585447 25957322

58. Rodriguez VJ, Chisembele M, Jones DL, Cook R, Weiss SM, Alcaide ML. Influencing the importance of health, partners, and hygiene among Zambian women. Int J STD AIDS. 2018;29(3):259–65. doi: 10.1177/0956462417723546 28764612

59. Phillips KA, Maddala T, Johnson FR. Measuring preferences for health care interventions using conjoint analysis: an application to HIV testing. Health Serv Res. 2002;37(6):1681–705. doi: 10.1111/1475-6773.01115 12546292

60. Llewellyn CD, Sakal C, Lagarde M, Pollard A, Miners AH. Testing for sexually transmitted infections among students: a discrete choice experiment of service preferences. BMJ open. 2013;3(10):e003240. doi: 10.1136/bmjopen-2013-003240 24165028

61. Lee SJ, Brooks R, Bolan RK, Flynn R. Assessing willingness to test for HIV among men who have sex with men using conjoint analysis, evidence for uptake of the FDA-approved at-home HIV test. AIDS care. 2013;25(12):1592–8. doi: 10.1080/09540121.2013.793272 23651439

62. Ostermann J, Njau B, Mtuy T, Brown DS, Muhlbacher A, Thielman N. One size does not fit all: HIV testing preferences differ among high-risk groups in Northern Tanzania. AIDS care. 2015;27(5):595–603. doi: 10.1080/09540121.2014.998612 25616562

63. Bristow CC, Lee SJ, Severe L, William Pape J, Javanbakht M, Scott Comulada W, et al. Attributes of diagnostic tests to increase uptake of dual testing for syphilis and HIV in Port-au-Prince, Haiti. Int J STD AIDS. 2017;28(3):259–64. doi: 10.1177/0956462416642340 27037111

64. Strauss M, George GL, Rhodes BD. Determining Preferences Related to HIV Counselling and Testing Services Among High School Learners in KwaZulu-Natal: A Discrete Choice Experiment. AIDS Behav. 2018;22(1):64–76. doi: 10.1007/s10461-016-1602-8 27853894

65. Zanolini A, Chipungu J, Vinikoor MJ, Bosomprah S, Mafwenko M, Holmes CB, et al. HIV Self-Testing in Lusaka Province, Zambia: Acceptability, Comprehension of Testing Instructions, and Individual Preferences for Self-Test Kit Distribution in a Population-Based Sample of Adolescents and Adults. AIDS Res Hum Retroviruses. 2018;34(3):254–260. doi: 10.1089/AID.2017.0156 28969432

66. Indravudh PP, Sibanda EL, d'Elbee M, Kumwenda MK, Ringwald B, Maringwa G, et al. 'I will choose when to test, where I want to test': investigating young people's preferences for HIV self-testing in Malawi and Zimbabwe. AIDS. 2017;31 Suppl 3:S203–s12.

67. Albus C, Schmeisser N, Salzberger B, Fatkenheuer G. Preferences regarding medical and psychosocial support in HIV-infected patients. Patient Educ Couns. 2005;56(1):16–20. doi: 10.1016/j.pec.2003.11.007 15590218

68. Opuni M, Bishai D, Gray GE, McIntyre JA, Martinson NA. Preferences for characteristics of antiretroviral therapy provision in Johannesburg, South Africa: results of a conjoint analysis. AIDS Behav. 2010;14(4):807–15. doi: 10.1007/s10461-009-9584-4 19533322

69. Baltussen R, Stolk E, Chisholm D, Aikins M. Towards a multi-criteria approach for priority setting: an application to Ghana. Health Econ. 2006;15(7):689–96. doi: 10.1002/hec.1092 16491464

70. Youngkong S, Baltussen R, Tantivess S, Koolman X, Teerawattananon Y. Criteria for priority setting of HIV/AIDS interventions in Thailand: a discrete choice experiment. BMC Health Serv Res. 2010;10:197. doi: 10.1186/1472-6963-10-197 20609244

71. Michaels-Igbokwe C, Lagarde M, Cairns J, Terris-Prestholt F. Designing a package of sexual and reproductive health and HIV outreach services to meet the heterogeneous preferences of young people in Malawi: results from a discrete choice experiment. Health Econ Rev. 2015;5:9. doi: 10.1186/s13561-015-0046-6 25984434

72. Kennedy VL, Loutfy MR, Sanandaji M, Barry F, Ongoiba F, Muchenje M, et al. Pregnancy planning choices for people living with and affected by HIV: Piloting a discrete choice experiment to evaluate factors that influence decision making. Int J STD AIDS. 2015;26:36B.

73. Jones DL, Cook R, Potter JE, Miron-Shatz T, Chakhtoura N, Spence A, et al. Fertility Desires among Women Living with HIV. PloS one. 2016;11(9):e0160190. doi: 10.1371/journal.pone.0160190 27610626

74. Safarnejad A, Pavlova M, Son VH, Phuong HL, Groot W. Criteria for prioritization of HIV programs in Viet Nam: a discrete choice experiment. BMC Health Serv Res. 2017;17(1):719. doi: 10.1186/s12913-017-2679-0 29132355

75. Stone VE, Jordan J, Tolson J, Miller R, Pilon T. Perspectives on adherence and simplicity for HIV-infected patients on antiretroviral therapy: self-report of the relative importance of multiple attributes of highly active antiretroviral therapy (HAART) regimens in predicting adherence. J Acquir Immune Defic Syndr. 2004;36(3):808–16. doi: 10.1097/00126334-200407010-00007 15213564

76. Sherer RD Jr., Fath MJ, Da Silva BA, Nicolau AM, Miller NL. The importance of potency and durability in HIV patient antiretroviral therapy preferences: a telephone survey. AIDS Patient Care STDS. 2005;19(12):794–802. doi: 10.1089/apc.2005.19.794 16375611

77. Hauber AB, Mohamed AF, Watson ME, Johnson FR, Hernandez JE. Benefits, risk, and uncertainty: preferences of antiretroviral-naive African Americans for HIV treatments. AIDS patient care and STDs. 2009;23(1):29–34. doi: 10.1089/apc.2008.0064 19113949

78. Muhlbacher AC, Stoll M, Mahlich J, Nubling M. Patient preferences for HIV/AIDS therapy—a discrete choice experiment. Health Econ Rev. 2013;3(1):14. doi: 10.1186/2191-1991-3-14 23663390

79. Muhlbacher AC, Stoll M, Mahlich J, Nubling M. Evaluating the concordance of physician judgments and patient preferences on AIDS/HIV therapy—a Discrete Choice Experiment. Health Econ Rev. 2013;3(1):30. doi: 10.1186/2191-1991-3-30 24351422

80. Lloyd A, Collomb D, Hearn S, Ali S, Mughal F. Patient and physician preferences regarding medications for HIV treatment. HIV Med. 2013;14:55–6.

81. Bregigeon-Ronot S, Cheret A, Cabie A, Prazuck T, Volny-Anne A, Ali S, et al. Evaluating patient preference and satisfaction for human immunodeficiency virus therapy in France. Patient Prefer Adherence. 2017;11:1159–69. doi: 10.2147/PPA.S130276 28744106

82. Orme M, Miners A, Sabin C, Fisher M, Rogatto F, Reilly G, et al. A discrete choice experiment to evaluate HIV patient preference for simplified treatment regimens: Results from the UK survey. HIV Med. 2015;16:13.

83. Bayoumi AM, Miles S, Antoniou T, Regier D, Park-Wyllie L, Strike CJ, et al. Preferences for attributes of antiretroviral drugs from the perspective of people living with HIV. Can J Infect Dis Med Microbiol. 2015;26:103B.

84. Hendriks A, Wijnen B, van Engelen R, Conde R, Evers S, Gonzalez J, et al. A best-worst scaling in Colombian patients to rank the characteristics of HIV/AIDS treatment. J Med Econ. 2018:1–13.

85. Newman PA, Duan N, Lee SJ, Rudy ET, Seiden DS, Kakinami L, et al. HIV vaccine acceptability among communities at risk: the impact of vaccine characteristics. Vaccine. 2006;24(12):2094–101. doi: 10.1016/j.vaccine.2005.11.013 16332402

86. Phillips KA, Johnson FR, Maddala T. Measuring what people value: a comparison of "attitude" and "preference" surveys. Health Serv Res. 2002;37(6):1659–79. doi: 10.1111/1475-6773.01116 12546291

87. Joint United Nations Programme on HIV/AIDS. Fast-Track-Ending the AIDS Epidemic by 2030. Geneva; 2014. [cited 12 October 2018]. Available from: http://www.unaids.org/en/resources/documents/2014/JC2686_WAD2014report

88. Fonner VA, Dalglish SL, Kennedy CE, Baggaley R, O'Reilly KR, Koechlin FM, et al. Effectiveness and safety of oral HIV preexposure prophylaxis for all populations. AIDS. 2016;30(12):1973–83. doi: 10.1097/QAD.0000000000001145 27149090

89. Bridges JF, Hauber AB, Marshall D, Lloyd A, Prosser LA, Regier DA, et al. Conjoint analysis applications in health—a checklist: a report of the ISPOR Good Research Practices for Conjoint Analysis Task Force. Value Health. 2011;14(4):403–13. doi: 10.1016/j.jval.2010.11.013 21669364

90. Salampessy BH, Veldwijk J, Jantine Schuit A, van den Brekel-Dijkstra K, Neslo RE, Ardine de Wit G, et al. The Predictive Value of Discrete Choice Experiments in Public Health: An Exploratory Application. Patient. 2015;8(6):521–9. doi: 10.1007/s40271-015-0115-2 25618790

91. de Bekker-Grob EW, Donkers B, Jonker MF, Stolk EA. Sample Size Requirements for Discrete-Choice Experiments in Healthcare: a Practical Guide. Patient. 2015;8(5):373–84. doi: 10.1007/s40271-015-0118-z 25726010


Článek vyšel v časopise

PLOS One


2019 Číslo 10