Are intestinal helminths playing a positive role in tuberculosis risk? A systematic review and meta-analysis

Autoři: Ali Taghipour aff001;  Mehrdad Mosadegh aff002;  Fatemeh Kheirollahzadeh aff003;  Meysam Olfatifar aff004;  Hossein Safari aff005;  Mohammad Javad Nasiri aff006;  Atefeh Fathi aff007;  Milad Badri aff001;  Hadi Piri Dogaheh aff008;  Taher Azimi aff002
Působiště autorů: Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran aff001;  Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran aff002;  Biology Department, School of Basic Science, Science and Research Branch Islamic Azad University (SRBIAU), Poonak, Tehran, Iran aff003;  Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran aff004;  Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran aff005;  Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran aff006;  Faculty of veterinary medicine, University of Zabol, Zabol, Iran aff007;  Department of Microbiology, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran aff008
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223722



Co-infection of intestinal helminthic infections (IHIs) and tuberculosis (TB) has appeared as a public health issue, especially in developing countries. Some recent studies have been carried out on the possible relevance of IHIs to TB. The current systematic review and meta-analysis was conducted to assess the prevalence and odds ratio (OR) of IHIs among TB patients and clarify the relationship between IHIs and TB disease.


For the purpose of the study, five English databases including PubMed, Science Direct, Scopus, Web of Science (ISI), and Google scholar were searched (up to January 30, 2019) in order to find the related studies. Random-effects meta-analysis model was used to estimate the pooled prevalence, odds ratio (OR), and 95% confidence interval (CI). Inclusion and exclusion criteria were applied.


A total of 20 studies including 10 studies with case-control design (2217 patients and 2520 controls) and 10 studies with cross-sectional design (a total of 2415 participants) met the eligibility criteria. As shown by the random-effects model, the pooled prevalence of IHIs in TB patients was estimated to be 26% (95% CI, 17–35%; 1249/4632). The risk of IHI was higher in TB patients compared to controls but this was not statistically significant. However, according to genus/species, the pooled OR of Strongyloides stercoralis (S. stercoralis) (OR, 2.68; 95% CI, 1.59–4.54) had a significantly higher risk in TB patients compared to controls. Nevertheless, the results of random effects model showed no statistically significant association between overall pooled OR of IHIs in TB patients compared to controls in case-control studies (OR, 1; 95% CI, 0–1).


It is highly recommended that more precise studies should be carried out by researchers in order to better understand this association. Also, it is of great importance to include the periodic screenings for IHIs in the routine clinical care of these patients.

Klíčová slova:

Case-control studies – Database searching – Helminth infections – Helminths – Metaanalysis – Mycobacterium tuberculosis – Systematic reviews – Tuberculosis


1. Azimi T, Shariati A, Fallah F, Fooladi I, Ali A, Hashemi A, et al. Mycobacterium Tuberculosis Genotyping Using MIRU-VNTR Typing. Journal of Mazandaran University of Medical Sciences. 2017;27(149):40–8.

2. Azimi T, Nasiri MJ, Zamani S, Hashemi A, Goudarzi H, Fooladi AAI, et al. High genetic diversity among Mycobacterium tuberculosis strains in Tehran, Iran. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases. 2018;11:1–6.

3. Organisation WH. Global tuberculosis report 2017. WHO Geneva, Switzerland; 2017.

4. Ducati RG, Ruffino-Netto A, Basso LA, Santos DS. The resumption of consumption: a review on tuberculosis. Memórias do Instituto Oswaldo Cruz. 2006;101(7):697–714. doi: 10.1590/s0074-02762006000700001 17160276

5. Cox F. Concomitant infections, parasites and immune responses. Parasitology. 2001;122(S1):S23–S38.

6. Thomas TA, Mondal D, Noor Z, Liu L, Alam M, Haque R, et al. Malnutrition and helminth infection affect performance of an interferon γ–release assay. Pediatrics. 2010;126(6):e1522–e9. doi: 10.1542/peds.2010-0885 21059723

7. McSorley HJ, Maizels RM. Helminth infections and host immune regulation. Clinical microbiology reviews. 2012;25(4):585–608. doi: 10.1128/CMR.05040-11 23034321

8. Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasites & vectors. 2014;7(1):37.

9. Tegegne Y, Wondmagegn T, Worku L, Jejaw Zeleke A. Prevalence of Intestinal Parasites and Associated Factors among Pulmonary Tuberculosis Suspected Patients Attending University of Gondar Hospital, Gondar, Northwest Ethiopia. Journal of parasitology research. 2018;2018.

10. Elias D, Britton S, Kassu A, Akuffo H. Chronic helminth infections may negatively influence immunity against tuberculosis and other diseases of public health importance. Expert review of anti-infective therapy. 2007;5(3):475–84. doi: 10.1586/14787210.5.3.475 17547511

11. Else K, Finkelman F, Maliszewski C, Grencis R. Cytokine-mediated regulation of chronic intestinal helminth infection. Journal of Experimental Medicine. 1994;179(1):347–51. doi: 10.1084/jem.179.1.347 8270879

12. Elias D, Mengistu G, Akuffo H, Britton S. Are intestinal helminths risk factors for developing active tuberculosis? Tropical Medicine & International Health. 2006;11(4):551–8.

13. Salgame P, Yap GS, Gause WC. Effect of helminth-induced immunity on infections with microbial pathogens. Nature immunology. 2013;14(11):1118. doi: 10.1038/ni.2736 24145791

14. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. 2010.

15. Schwarzer G. meta: An R package for meta-analysis. R news. 2007;7(3):40–5.

16. IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC medical research methodology. 2014;14(1):25.

17. Abate E, Belayneh M, Idh J, Diro E, Elias D, Britton S, et al. Asymptomatic helminth infection in active tuberculosis is associated with increased regulatory and Th-2 responses and a lower sputum smear positivity. PLoS neglected tropical diseases. 2015;9(8):e0003994. doi: 10.1371/journal.pntd.0003994 26248316

18. Sikalengo G, Hella J, Mhimbira F, Rutaihwa LK, Bani F, Ndege R, et al. Distinct clinical characteristics and helminth co-infections in adult tuberculosis patients from urban compared to rural Tanzania. Infectious diseases of poverty. 2018;7(1):24. doi: 10.1186/s40249-018-0404-9 29580279

19. Neto L, Oliveira RdVCd, Totino PR, Sant'Anna FM, Coelho VdO, Rolla VC, et al. Enteroparasitosis prevalence and parasitism influence in clinical outcomes of tuberculosis patients with or without HIV co-infection in a reference hospital in Rio de Janeiro (2000–2006). Brazilian Journal of Infectious Diseases. 2009;13(6):427–32. 20464334

20. Hasanain AFA, Zayed AA-AH, Mahdy RE, Nafee AMA, Attia RA-MH, Mohamed AO. Hookworm infection among patients with pulmonary tuberculosis: Impact of co-infection on the therapeutic failure of pulmonary tuberculosis. International journal of mycobacteriology. 2015;4(4):318–22. doi: 10.1016/j.ijmyco.2015.09.002 26964815

21. Kassu A, Mengistu G, Ayele B, Diro E, Mekonnen F, Ketema D, et al. HIV and intestinal parasites in adult TB patients in a teaching hospital in Northwest Ethiopia. Tropical doctor. 2007;37(4):222–4. doi: 10.1258/004947507782333026 17988484

22. Alemu G, Mama M. Intestinal helminth co-infection and associated factors among tuberculosis patients in Arba Minch, Ethiopia. BMC infectious diseases. 2017;17(1):68. doi: 10.1186/s12879-017-2195-1 28086814

23. Marcellinus O, John I, Fredrick E, Mirabeau T, Oluwaseun E. Intestinal helminthiasis among HIV-related pulmonary tuberculosis patients in Abeokuta, Nigeria. Kuwait Medical Journal. 2010;42(2):129–34.

24. Tristão-Sá R, Ribeiro-Rodrigues R, Johnson LT, Pereira FEL, Dietze R. Intestinal nematodes and pulmonary tuberculosis. Revista da Sociedade Brasileira de Medicina Tropical. 2002;35(5):533–5. doi: 10.1590/s0037-86822002000500020 12621678

25. Li X-X, Chen J-X, Wang L-X, Tian L-G, Zhang Y-P, Dong S-P, et al. Intestinal parasite co-infection among pulmonary tuberculosis cases without human immunodeficiency virus infection in a rural county in China. The American journal of tropical medicine and hygiene. 2014;90(1):106–13. doi: 10.4269/ajtmh.13-0426 24166044

26. Manuel Ramos J, Reyes F, Tesfamariam A. Intestinal parasites in adults admitted to a rural Ethiopian hospital: relationship to tuberculosis and malaria. Scandinavian journal of infectious diseases. 2006;38(6–7):460–2. doi: 10.1080/00365540500525187 16798694

27. Franke MF, del Castillo H, Pereda Y, Lecca L, Fuertes J, Cárdenas L, et al. Parasite infection and tuberculosis disease among children: a case–control study. The American journal of tropical medicine and hygiene. 2014;90(2):279–82. doi: 10.4269/ajtmh.13-0425 24379242

28. Mhimbira F, Hella J, Said K, Kamwela L, Sasamalo M, Maroa T, et al. Prevalence and clinical relevance of helminth co-infections among tuberculosis patients in urban Tanzania. PLoS neglected tropical diseases. 2017;11(2):e0005342. doi: 10.1371/journal.pntd.0005342 28178325

29. Abate E, Belayneh M, Gelaw A, Idh J, Getachew A, Alemu S, et al. The impact of asymptomatic helminth co-infection in patients with newly diagnosed tuberculosis in north-west Ethiopia. PLoS One. 2012;7(8):e42901. doi: 10.1371/journal.pone.0042901 22952620

30. Alemayehu M, Birhan W, Belyhun Y, Sahle M, Tessema B. Prevalence of smear positive tuberculosis, intestinal parasites and their co-infection among tuberculosis suspects in Gondar University Hospital and Gondar Poly Clinic, North West Ethiopia. J Microb Biochem Technol. 2014;6(4):179–84.

31. Kassu A, Mohammad A, Fujimaki Y, Moges F, Elias D, Mekonnen F, et al. Serum IgE levels of tuberculosis patients in a tropical setup with high prevalence of HIV and intestinal parasitoses. Clinical & Experimental Immunology. 2004;138(1):122–7.

32. Hailu AW. The case control studies of HIV and Intestinal parasitic infections rate in active pulmonary tuberculosis patients in Woldia General Hospital and Health Center in North Wollo, Amhara Region, Ethiopia. International journal of pharma sciences. 2015;5(3):1092. 26998497

33. Taghipour A, Tabarsi P, Sohrabi MR, Riahi SM, Rostami A, Mirjalali H, et al. Frequency, associated factors and clinical symptoms of intestinal parasites among tuberculosis and non-tuberculosis groups in Iran: a comparative cross-sectional study. Transactions of The Royal Society of Tropical Medicine and Hygiene. 2019;113(5):234–41. doi: 10.1093/trstmh/try140 30624729

34. Taghipour A, Azimi T, Javanmard E, Pormohammad A, Olfatifar M, Rostami A, et al. Immunocompromised patients with pulmonary tuberculosis; a susceptible group to intestinal parasites. Gastroenterology and hepatology from bed to bench. 2018;11(Suppl 1):S134. 30774820

35. Bentwich Z, Kalinkovich A, Weisman Z, Borkow G, Beyers N, Beyers AD. Can eradication of helminthic infections change the face of AIDS and tuberculosis? Immunology today. 1999;20(11):485–7. 10529774

36. Hotez PJ, Molyneux DH, Fenwick A, Ottesen E, Sachs SE, Sachs JD. Incorporating a rapid-impact package for neglected tropical diseases with programs for HIV/AIDS, tuberculosis, and malaria. PLoS medicine. 2006;3(5):e102. doi: 10.1371/journal.pmed.0030102 16435908

37. Taghipour A, Javanmard E, Mirjalali H, Haghighi A, Tabarsi P, Sohrabi MR, et al. Blastocystis subtype 1 (allele 4); Predominant subtype among Tuberculosis patients in Iran. Comparative Immunology, Microbiology and Infectious Diseases. 2019.

38. Murray C, Styblo K, Rouillon A. Tuberculosis in developing countries: burden, intervention and cost. Bulletin of International Union against Tuberculosis and Lung Disease. 1990;65(1):6–24.

39. Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. The lancet. 2006;367(9521):1521–32.

40. Farmer P. Social inequalities and emerging infectious diseases. Emerging infectious diseases. 1996;2(4):259. 8969243

41. Bloom DE, Sachs JD, Collier P, Udry C. Geography, demography, and economic growth in Africa. Brookings papers on economic activity. 1998;1998(2):207–95.

42. Lustigman S, Prichard RK, Gazzinelli A, Grant WN, Boatin BA, McCarthy JS, et al. A research agenda for helminth diseases of humans: the problem of helminthiases. PLoS neglected tropical diseases. 2012;6(4):e1582. doi: 10.1371/journal.pntd.0001582 22545164

43. Ting NY, Tey NP. Human Development Index as a Predictor of Life Satisfaction. Journal of Population and Social Studies [JPSS]. 2019;27(1):70–86.

44. Herrero C, Martínez R, Villar A. Population structure and the human development index. Social Indicators Research. 2019:1–33.

45. Kelley AC. The human development index: Handle with care. Population and Development Review. 1991;17(2):315–24.

46. Noorbakhsh F. A modified human development index. World Development. 1998;26(3):517–28.

47. Babu S, Nutman TB. Helminth-tuberculosis co-infection: an immunologic perspective. Trends in immunology. 2016;37(9):597–607. doi: 10.1016/ 27501916

48. Igra-Siegman Y, Kapila R, Sen P, Kaminski ZC, Louria DB. Syndrome of hyperinfection with Strongyloides stercoralis. Reviews of infectious diseases. 1981;3(3):397–407. doi: 10.1093/clinids/3.3.397 7025145

49. Pakdad K, Nasab SDM, Damraj F-A, Ahmadi NA. Comparing the efficiency of four diagnostic concentration techniques performed on the same group of intestinal parasites. Alexandria journal of medicine. 2018;54(4):495–501.

50. Ahmadi NA, Damraj F-a. A field evaluation of formalin–gasoline technique in the concentration of stool for detection of intestinal parasites. Parasitology research. 2009;104(3):553–7. doi: 10.1007/s00436-008-1229-4 18931858

51. Tarafder M, Carabin H, Joseph L, Balolong E Jr, Olveda R, McGarvey S. Estimating the sensitivity and specificity of Kato-Katz stool examination technique for detection of hookworms, Ascaris lumbricoides and Trichuris trichiura infections in humans in the absence of a ‘gold standard’. International journal for parasitology. 2010;40(4):399–404. doi: 10.1016/j.ijpara.2009.09.003 19772859

52. Nikolay B, Brooker SJ, Pullan RL. Sensitivity of diagnostic tests for human soil-transmitted helminth infections: a meta-analysis in the absence of a true gold standard. International journal for parasitology. 2014;44(11):765–74. doi: 10.1016/j.ijpara.2014.05.009 24992655

53. Boccia D, Hargreaves J, De Stavola BL, Fielding K, Schaap A, Godfrey-Faussett P, et al. The association between household socioeconomic position and prevalent tuberculosis in Zambia: a case-control study. PloS one. 2011;6(6):e20824. doi: 10.1371/journal.pone.0020824 21698146

54. Bergquist R, Johansen MV, Utzinger J. Diagnostic dilemmas in helminthology: what tools to use and when? Trends in parasitology. 2009;25(4):151–6. doi: 10.1016/ 19269899

Článek vyšel v časopise


2019 Číslo 10